Природа и происхождение вирусов. Происхождение и природа вирусов Вирусные заболевания человека

Конечно, современные формы вирусов нельзя сопоставлять с первичными формами жизни. Они должны отличаться от последних в результате пройденного исторического развития, но сохраняют общие типовые черты неклеточной организации.

С открытием в 1892 г. Д. И. Ивановским вирусов заполнился пробел в истории развития организмов. Положение Энгельса о длительном периоде исторического развития неклеточных существ получило конкретизацию в мире вирусов.

Природа вирусов. Вирусы занимают особое положение по сравнению с другими группами микроорганизмов. Они находятся как бы на грани живой и неживой природы. Природа их в течение всей истории вирусологии была предметом многочисленных исследований и дискуссий. Что они такое - существа или вещества, существо со свойствами вещества или наоборот? Постановка этих вопросов указывает на двойственный характер их свойств. Действительно, во внешней среде вирусы, в том числе и фаги, представляют собой совершенно инертные образования, не проявляющие признаков жизни - дыхания, питания, размножения. Многие из них можно превращать в кристаллы. В кристаллическом или в высушенном состоянии их можно сохранять долгие годы. Они ведут себя, как химические соединения. Но стоит им попасть в чувствительные клетки, как у них начинают проявляться все признаки жизни - размножение, наследственность, изменчивость, способность к приспособлению, эволюции.

Видный американский вирусолог В. М. Стенли считает характерной чертой вирусов двойственность их природы. В свободном состоянии вирус - это просто гигантская молекула со всеми особенностями, присущими всем большим молекулам. В живой же клетке он проявляет себя как организм, репродуцирует и мутирует. Так, ВТМ представляет собой то мельчайший организм, то самую крупную молекулу.

Некоторые ученые, исходя из способности вирусов к кристаллизации и ферментов к аутокатализу, т. е. катализу под влиянием продуктов, выделяемых в результате самой реакции, относят вирусы к ферментам. Но химический состав вирусов и ферментов отвергает его ферментную природу. Ферменты - белковые вещества, а вирусы кроме белков содержат еще нуклеиновые кислоты, которые направляют синтез белков. Явление кристаллизации зависит от массы и структуры частиц, образующих кристаллическую решетку. Масса бактерий, риккетсий, крупных вирусов слишком велика, чтобы они могли стать структурными единицами кристаллов. Мелкие вирусы, обладающие малыми размерами, могут вследствие действия межмолекулярных сил сцепления и физико-химического строения частиц кристаллизоваться.

Спор о природе вирусов имеет не только теоретический интерес, но и большое практическое значение. Ясно, что мероприятия по борьбе с вирусными болезнями человека, животных и растений будут совершенно различными в зависимости от того, вызываются ли они живыми организмами, или же они возникают в результате попадания в организм или образования в нем каких-то веществ. Все мероприятия по борьбе с вирусными инфекциями исходят из признания живой природы вирусов. И практика доказала эффективность этих мероприятий.

Считается, что вирусы (от лат. virus - яд) - нечто противное, приносящее одни неприятности. Но это грубая ошибка. Вирусы - ключевые созидатели живой природы и двигатели ее эволюции.

Один из главных доводов против гипотезы о том, что вирусы «сбежали» из клеток, - тот факт, что вирусные генетические системы существенно разнообразнее клеточных. Как известно, клеточные организмы имеют только двунитевые - линейные или кольцевые - ДНК-геномы. А геном вируса может быть представлен как одно-, так и двунитевыми молекулами РНК или ДНК, линейными или кольцевыми. Также существуют системы, использующие обратную транскрипцию. Так, у ретровирусов (например, некоторых онковирусов, ВИЧ) и параретровирусов (вирусов гепатита В, мозаики цветной капусты и др.) одна из цепей геномной ДНК синтезируется на матрице РНК. У вирусов, в отличие от клеточных организмов, реализуются все теоретически возможные способы хранения и выражения генетической информации .

Второй важный довод против того, чтобы считать вирусы произошедшими из клеток, заключается в том, что существует множество вирусных генов, которых в клеточных организмах нет. Клеточные организмы не только произошли от вирусов, но и унаследовали от них (и продолжают наследовать) значительную часть своего генетического материала. Особый интерес в этом отношении представляют эндогенные вирусы (части генома РНК- или ДНК-вирусов, встроенные в геном клетки), среди которых преобладают гены, происходящие от ретровирусов. Полагают, что млекопитающие унаследовали свыше половины генома от вирусов и их ближайших родственников - «эгоистических» генетических элементов, например, плазмид и транспозонов. Таким образом, вирусы - сородители человека. Часто последовательности генов эндогенных вирусов, которые в большом количестве имеются в человеческом геноме, изменены и уже не кодируют белки. Есть серьезные основания полагать, что такие последовательности участвуют в регуляции работы клеточных генов, хотя часто их конкретные биологические функции неизвестны. Однако кое-что важное мы знаем: например, белок синцитин, который кодируется геном оболочки одного эндогенного ретровируса, необходим для слияния клеток при образовании плаценты . Значит, ни человек, ни плацентарные животные не могли бы родиться без этого эндогенного вируса. Есть и другой важный пример. Выяснилось, что компонент генома одного из эндогенных вирусов контролирует экспрессию пролиндегидрогеназы в некоторых районах центральной нервной системы . Возможно, этот фермент принимал важное участие в эволюции мозга человека. Если в результате мутаций экспрессия этого фермента нарушена, возникают психические болезни, в том числе шизофрения. Также важную роль вирусы и их родственники играют в горизонтальном переносе клеточных генов - от одного организма другому.

Однако, несмотря на ключевую роль в эволюции, наибольшую известность вирусы получили как патогены человека, животных и растений (кстати, благодаря этому они и были впервые обнаружены). И далее речь пойдет о природе вирусной патогенности. У вирусов (особенно вирусов эукариот) нет специального «желания» навредить хозяину, а тем более его убить. И во многих случаях вирусы вполне мирно и дружелюбно уживаются с клетками. Почему же все-таки многие вирусы такие зловредные? Обычное объяснение заключается в том, что патология зараженной клетки вызывается «разграблением» ее ресурсов (материальных и структурных), которые вирус направляет на собственные нужды размножения. Однако наибольший вред может происходить от нерасчетливых защитных действий хозяев и противозащитной активности вирусов, которая прямо не связана с их размножением.

Механизмы защиты и противозащиты

Каковы главные защитные механизмы зараженной клетки? Это компоненты врожденного иммунитета: деградация РНК (вирусных, а также клеточных), угнетение синтеза белков (как вирусных, так и клеточных), самоликвидация (апоптоз и другие виды программируемой гибели) и, наконец, воспаление. Собственно, многие вирусы так и обнаружили свое существование - из-за вызываемого ими воспаления (энцефалита, воспаления легких и т. д.). Клетка борется с вирусом, нарушая собственные обмен веществ и / или структуру, и ее защитные механизмы, как правило, самоповреждающие. Можно сказать, что человек, умерший от полиомиелита (а умирает менее 1%), сам убил себя, борясь с инфекцией.

В ответ на клеточную защиту эволюция вирусов вырабатывает противозащитные средства, и между вирусом и клеткой идет гонка вооружений. Эти средства направлены прежде всего против общих метаболических процессов, лежащих в основе защитных реакций клетки. Это опять угнетение синтеза клеточных РНК и белков, нарушение внутриклеточной инфраструктуры и транспорта клетки, подавление или, наоборот, запуск апоптоза и других механизмов, вызывающих программируемую клеточную гибель. Таким образом, противозащитная стратегия вируса во многом похожа на защитное поведение клетки. Образно говоря, борцы применяют одни и те же приемы, бьют в одни и те же ворота. Например, клетка, подавляя синтез вирусных белков, использует интерферон, а, чтобы затормозить его образование, вирус, в свою очередь, угнетает белковый синтез в клетке. В зависимости от обстоятельств выгоду получает та или другая сторона. Оказывается, главный вклад в патологию вносит не размножение вируса как таковое, а противоборство клеточной защиты и вирусной противозащиты. В фитопатологии давно существует понятие «толерантность»: патогенный вирус может активно размножаться в зараженном растении, не вызывая болезненных симптомов.

Далее речь пойдет в основном о РНК-содержащих вирусах (это более простой пример). Как РНК-вирус, проникнув в клетку, выдает свое присутствие? И как клетка узнает, что в нее попал вирус? Главный признак, благодаря которому клетка это «понимает», - вирусная двуцепочечная РНК, которая в принципе может образовываться и в незараженной клетке, но не в таких количествах и местах. Клетка в некоторых случаях узнает также вирусную одноцепочечную РНК, а иногда (значительно реже) - и вирусные белки. Важно, что узнавание вирусной РНК неспецифично: «почувствовав» двуцепочечную РНК, клетка может «подумать», что в нее попал вирус, но какой - она не знает. РНК улавливаются сенсорами двух типов: толл-подобными (от англ. toll-like и от нем. toll - замечательный) рецепторами и специализированными РНК-хеликазами. Они включают ряд защитных механизмов на транскрипционном уровне, в том числе образование интерферона. Кроме того, вирусные РНК узнаются уже «исполнителями» - зависимой от двуцепочечной РНК протеинкиназой PKR, которая фосфорилирует некоторые факторы инициации трансляции, угнетая тем самым синтез белков; олигоаденилатсинтетазой (OAS), которая активирует РНКазу L, расщепляющую РНК; системой РНК-интерференции, приводящей к деградации РНК и нарушению ее трансляции.

Поскольку вирус узнается как нечто неспецифическое, клетка не может знать его «намерений». И вообще на любой возможный вирус индивидуальную врожденную систему защиты было бы невозможно придумать. Значит, клетка может бороться с вирусом только стандартными приемами. И поэтому ее оборонительные действия часто несоразмерны имеющейся угрозе. Однако, если защитные реакции клетки столь неспецифичны, почему разные вирусы вызывают все-таки различные болезни? Во-первых, каждый вирус может заражать только определенный вид клеток конкретных организмов. Это связано с тем, что для проникновения в клетку он должен провзаимодействовать с клеточными рецепторами, которые ему «подходят». Кроме того, для размножения вирусов требуется определенная внутриклеточная среда (нередко нужны специфические клеточные белки). Во-вторых, в то время как защитные реакции клетки стандартны, противозащитные средства вируса в большой степени индивидуальны, хотя и направлены против стандартных клеточных механизмов.

У растений в качестве противовирусного механизма очень важную роль играет РНК-интерференция. Из вирусной РНК образуется двуцепочечная (важный фактор, по которому клетка узнает о наличии вируса). При участии компонентов системы РНК-интерференции - фермента Dicer, который разрезает эту двуцепочечную РНК на фрагменты длиной 21–25 пар нуклеотидов, а затем РНК-белкового комплекса RISC - в конце концов образуются одноцепочечные короткие фрагменты РНК. Гибридизуясь с вирусной РНК, они вызывают либо ее деградацию, либо угнетение ее трансляции. Такой защитный механизм эффективен, но может повреждать саму клетку, что хорошо видно на примере вироидов. Это патогены растений, короткие (несколько сотен нуклеотидов) молекулы кольцевой одноцепочечной РНК, не покрытые белковой оболочкой. Вироиды не кодируют белки, но могут вызывать тяжелые симптомы в зараженном растении. Это происходит потому, что клетка защищается. Образующаяся вироидная двуцепочечная РНК подвергается действию всех компонентов системы РНК-интерференции, в результате образуются фрагменты одноцепочечной РНК, которые гибридизуются уже не с вирусной РНК, а с клеточной. Это приводит к ее деградации и развитию симптомов заболевания. Однако многие вирусы растений кодируют разнообразные белки, препятствующие РНК-интерференции (viral suppressors of RNA silencing - VSR ). Они либо угнетают распознавание и расщепление вирусных РНК, либо подавляют формирование и функционирование комплекса RISC. Поэтому эти VSR-белки могут нарушать механизмы физиологически важной (не связанной с вирусами) РНК-интерференции, вызывая патологические симптомы.

«Секьюрити»-белки

От работы таких белков в значительной степени зависит противозащита вирусов, в частности пикорнавирусов - мелких РНК-содержащих патогенов. В эту большую группу входят, в частности, возбудители полиомиелита, гепатита А, ящура и др. Особенность этих вирусов в том, что за редким исключением их белки синтезируются в виде единого полипротеина, из которого затем образуются отдельные зрелые белки. Среди них можно выделить три группы. Первая состоит из ключевых белков - жизненно важных, с фиксированными функциями, непосредственно обеспечивающих размножение вируса: РНК-зависимые РНК-полимеразы, необходимые для репликации вирусного генома; капсидные белки, образующие белковую оболочку вируса; протеазы, принимающие участие в процессе превращения полипротеина в зрелые белки; белок VPg (viral protein genome linked - вирусный белок, соединенный с геномом), служащий затравкой для синтеза молекул РНК; хеликаза - очень ценный фермент, который есть у всех пикорнавирусов, но играет не очень понятную роль. Вторая группа включает также жизненно необходимые белки, но выполняющие «подсобные» работы - гидрофобные белки-«гиды» 2В и 3А. Они направляют ключевые белки в места назначения и способствуют созданию оптимальной внутриклеточной среды для репродукции вируса. В третью группу включаются лидерный белок L, открытый в нашей лаборатории 30 лет назад , и белок 2А; мы назвали их «секьюрити»-белками (security - охрана) . Это специализированное противозащитное «вооружение» пикорнавирусов. Вообще, все эти три класса белков могут бороться с защитными механизмами клетки. Но ключевые белки и белки-«гиды» занимаются этой работой «по совместительству», так как у них есть другие важные обязанности, которым должны соответствовать их структура и функции. Следовательно, их оборонительные возможности ограничены необходимостью выполнять основную работу. А вот «секьюрити»-белки трудятся по специальности «на полную ставку» - эволюция «наняла» их именно для «охраны» (потом некоторые из них «научились» делать и что-то еще). Для исполнения своих обязанностей они могут иметь любую необходимую структуру .

Одна из важнейших функций «секьюрити»-белков состоит в том, что они принимают участие в определении судьбы зараженной клетки. Существует много разных вариантов ее гибели, но два главных, наиболее известных механизма - некроз и апоптоз, которые различаются по морфологическим и биохимическим признакам. При некрозе клетка лизируется, а ее содержимое изливается наружу, в межклеточное пространство. При апоптозе на ее поверхности образуются хорошо различимые выпячивания, ее ДНК деградирует до нуклеосомных фрагментов, и в конечном счете клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Очень важно, как именно клетка умрет. При некрозе развивается защитное воспаление, но при этом вирус выходит из клетки и распространяется. При апоптозе же распространение вируса ограничено и обычно нет воспалительной реакции. Гибель зараженной клетки, как правило, - это акт самопожертвования, ограничивающий репродукцию вируса.

Мы обнаружили, что заражение пикорнавирусами, в частности вирусом полиомиелита (полиовирусом), включает апоптозную программу клетки . Это происходит по одному из классических путей, когда из митохондрий выходит цитохром c и активируется каскад протеолитических ферментов каспаз . Но, с другой стороны, выяснилось, что у вирусов есть антиапоптозный механизм - способность подавлять апоптозную реакцию клетки . Так, клетки HeLa, зараженные полиовирусом или вирусом энцефаломиокардита (тоже пикорнавирусом), погибают с признаками некроза. А вот если выключить антиапоптозное «оружие» (подавить синтез вирусных белков), клетка гибнет от апоптоза (самопожертвования). У обоих вирусов таким оружием служат «секьюрити»-белки. Однако у вируса энцефаломиокардита в этой роли выступает L-белок , а у полиовируса - 2A-белок . Лидерный белок не имеет ферментативной активности, тогда как 2А-белок - протеаза. У них нет ничего общего ни в структурном, ни в биохимическом отношении, но они оба обладают антиапоптозным действием, основанным на разных молекулярных механизмах.

Другой противозащитный механизм «секьюрити»-белков пикорнавирусов - нарушение ядерно-цитоплазматического транспорта [10–12 ]. Мы показали, что при заражении этими вирусами повышается проницаемость ядерной оболочки и нарушается активный обмен макромолекулами между цитоплазмой и ядром. А если структура клетки повреждена, то она не может включать свои регуляторные механизмы для борьбы с вирусом. У полиовируса «секьюрити»-белок 2А нарушает ядерно-цитоплазматический транспорт, гидролизуя нуклеопорины - компоненты ядерных пор . А у вируса энцефаломиокардита работает лидерный белок - он влияет на клеточный каскад фосфорилирования нуклеопоринов [ , ].

Противозащитная функция «секьюрити»-белков может проявляться и по-другому. Так, L-белки кардиовирусов (в том числе вируса энцефаломиокардита) и 2А-белки энтеровирусов (включая полиовирус) угнетают образование интерферона. А его действие тормозят L-белок вируса ящура и 2А-белок полиовируса. Тем не менее «секьюрити»-белки пикорнавирусов - не жизненно важные. Обоих стражей можно удалить либо вызвать в них значительные делеции (как в случае L-белка кардиовирусов, 2A-белков вируса гепатита А и кардиовирусов) - и при этом вирус не лишается жизнеспособности.

Обоюдное разоружение

Каковы будут последствия инактивации вирусных «секьюрити»-белков для клетки? С одной стороны, повысится чувствительность вирусов к защитным механизмам врожденного клеточного иммунитета. Но, с другой стороны, возрастет и его самоповреждающая, самоубийственная активность. А что произойдет, если одновременно выключить оборонительные механизмы клетки и вируса? Мы изучали такую ситуацию на примере взаимодействия менговируса (штамма вируса энцефаломиокардита) и клеток HeLa . Зараженные вирусом дикого типа, они достаточно быстро гибнут от некроза. А если вирус частично разоружен (инактивирован лидерный белок), клетки HeLa живут чуть дольше и гибнут не от некроза, а от апоптоза. Когда же снижена обоюдная оборона (в клетке выключен апоптоз химическим соединением, которое угнетает каспазы, а у вируса инактивирован его лидерный белок), даже через вдвое больший промежуток времени клетки чувствуют себя значительно лучше, чем те, которые не были разоружены. А размножение вируса (и динамика, и урожай) шло совершенно одинаково, независимо от того, была ли выключена только его противозащита или одновременно снята и клеточная оборона. Получается, что в клетках, в которых еще нет серьезных патологических повреждений (так называемого цитопатического эффекта), может образоваться уже очень много вирусных частиц. Таким образом, для размножения вируса повреждение клетки необязательно. Следовательно, эффективной стратегией антивирусной терапии, направленной на облегчение симптомов заболевания, может служить одновременное подавление как вирусной противозащиты, так и клеточной защиты.

Программируемая гибель

Эта серия наших опытов дала также возможность проникнуть глубже в природу вызываемой вирусом некротической смерти. Что это - убийство клетки вирусом или ее самоубийство (самопожертвование), когда она решает, что ради общего блага целесообразнее погибнуть? Некротическим поражениям подвергаются:

  • плазматическая мембрана (повышается ее проницаемость, образуются «волдыри»),
  • цитоплазма (изменяются микротрубочки и микрофиламенты),
  • ядро (сжимается, деформируется, конденсируется хроматин),
  • метаболическая активность (изменяются NADH-зависимые восстановительные реакции, жизнеспособность).

При выключенном апоптозе (добавлении химического ингибитора каспаз) разнообразные некротические изменения зависят от того, функционирует вирусный лидерный белок или нет. Например, если он инактивирован, у клетки не меняется мембранная проницаемость, не появляются «волдыри», связанные с нарушением осмотического равновесия, не происходит и ряд других некротических поражений. Одно из возможных объяснений этого эффекта таково: L-белок воздействует на множество мишеней в разных клеточных компартментах. Но поскольку этот белок небольшой и не имеет ферментативной активности, более вероятно, что число его непосредственных мишеней гораздо меньше. Мы предполагаем, что лидерный белок воздействует на один или несколько ключевых клеточных элементов, контролирующих судьбу клетки, и в результате запускается ее некротическая программа, которая ответственна за большинство перечисленных патологических изменений. Следовательно, не вирус убивает клетку некротическим путем, а она сама кончает жизнь самоубийством (осуществляет акт самопожертвования). Эта точка зрения согласуется с новыми представлениями, в соответствии с которыми помимо апоптоза существует ряд других физиологически важных видов программируемой (закодированной в клеточном геноме) гибели клеток, в том числе сходный с некрозом - некроптоз.

Таким образом, самопожертвование клетки при вирусной инфекции может проявляться в виде некроптоза или апоптоза. Некроптоз может быть защитной реакцией клетки на вирусную инфекцию, и не только в случае пикорнавирусов. Какой механизм выгоднее для вируса - зависит от условий. Мы видим, что его противозащитное действие может проявляться в виде «перемаршрутирования» механизмов, закодированных в геноме клетки. Это важный (хотя и не единственный) способ противозащиты и один из основных механизмов патогенности вирусов. Индуцированные вирусом программы апоптоза и некроза конкурируют друг с другом . Мы показали, что при заражении клеток HeLa полиовирусом сначала включается апоптоз, а затем происходит его подавление и запускается некротический путь. Таким образом, заражение клетки вирусом активирует в ней ряд защитных действий, среди которых есть два самоубийственных механизма программируемой гибели - апоптозный и некротический. А дальше происходит конкуренция между этими путями: угнетение одного из них активирует другой, и наоборот . И все это регулируется клеточными белками, вирусными (в первую очередь «секьюрити»-белками), а также внешними факторами.

Гонка вооружений

Так как у клеток существуют защитные механизмы, а у вирусов - противозащитные, естественно, между ними происходит гонка вооружений. Неконсервативность «секьюрити»-белков позволяет предположить, что они адаптированы для противодействия оборонным механизмам определенного хозяина . И поэтому его смена может сопровождаться утерей функции «секьюрити»-белка и, как следствие, усилением защитных реакций хозяина. Этим можно объяснить особую патогенность «новых» (newly emerging - нарождающихся) вирусов. Так, вирус гриппа - малопатогенный, почти безобидный кишечный вирус диких птиц. Когда он заражает человека, может возникать испанка, птичий или свиной грипп. Вирус атипичной пневмонии - относительно безопасен для летучих мышей, а у человека от него возникает тяжелый острый респираторный синдром, сопровождающийся высокой летальностью. Наконец, ВИЧ (точнее - его предок) практически безвреден для обезьян, а у человека он вызывает СПИД. Очень важно, что новых факторов патогенности при переходе к новому хозяину у этих вирусов не возникает (просто в результате нескольких мутаций, обеспечивающих проникновение в клетку, они приобретают способность заражать человека). Другим возможным механизмом нарушения равновесия между вирусом и хозяином и появления новых патогенов может быть смена вирусного противозащитного оружия, например, утеря старого или приобретение нового «секьюрити»-белка.

Однако длительная коэволюция хозяина и вируса должна приводить к снижению патогенности последнего (взаимовыгодному обоюдному разоружению). Классический пример - вирус миксомы / фибромы. В середине XIX в. в Австралию завезли европейских кроликов, которые быстро размножились и стали серьезной угрозой для сельского хозяйства. Через 100 лет для контроля их популяции стали использовать патогенный вирус фибромы / миксомы (из семейства поксвирусов, к которому относится и вирус оспы). Разные кролики по-разному реагируют на этот вирус. У бразильских кроликов через три недели после заражения он вызывает доброкачественную опухоль - фиброму (локализованный узелок на коже). Но у европейских кроликов, чувствительных к этому вирусу, уже через 10 дней после заражения развивается генерализованное смертельное заболевание.

Завезенный в Австралию, этот вирус вызывал переносимые комарами летние эпизоотии, когда более 99% инфицированных кроликов гибли меньше чем за две недели. Перезимовать больше шансов имели менее вирулентные варианты вируса, и это приводило к отбору ослабленных (аттенуированных) штаммов. И примерно через 10 лет смертность европейских кроликов от эволюционировавшего вируса снизилась вдвое. Одновременно шел отбор резистентных кроликов: их смертность от исходного вируса снизилась примерно в четыре раза. Всего за десятилетие (ничтожно малый срок в рамках эволюции) примерно в 10 раз улучшились взаимоотношения между патогеном и хозяином. Это, безусловно, несколько упрощенная схема, поскольку гонка вооружений не прекращается: в ответ на повышение резистентности кроликов может возрастать и вирулентность вируса. Однако это яркий пример роли взаимодействия вирусов и клеточных организмов в эволюции и тех и других. Вирусы и клетки «учат» друг друга, и полученные «знания» наследуются. В 2013 г. году два выпускника кафедры вирусологии МГУ Евгений Кунин и Валерьян Доля опубликовали статью о «вироцентрическом» взгляде на эволюцию, согласно которому противодействие и кооперация вирусов и клеточных организмов - главный фактор их эволюции .

Мой рассказ далеко не исчерпывает тему: о природе патогенности вирусов известно значительно больше. Многое из того, что мы сейчас знаем, удалось изучить в самые последние годы, и есть все основания ожидать новых сюрпризов. Можно и нужно винить вирусы за тяжелые болезни и необходимо бороться с ними, но мы должны быть благодарны вирусам за существование и разнообразие живой природы, и в том числе - за существование человека.

Автор благодарен коллегам по научной кооперации - сотрудникам Института полиомиелита и вирусных энцефалитов им. М. П. Чумакова РАМН, Московского государственного университета им. М. В. Ломоносова, Института белка РАН (Пущино Московской области), Университета Базеля (Швейцария), Университета штата Висконсин (США), Университета Неймегена им. Радбода (Нидерланды).

Статья основана на лекции, прочитанной на школе «Современная биология и биотехнологии будущего» (Звенигород, 26 января - 1 февраля 2014 г.).

. Belov G. A., Lidsky P. V., Mikitas O. V. et al. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores // J. Virol. 2004. V. 78. P. 10166–10177. doi:10.1128/JVI.78.18.10166-10177.2004
. Lidsky P. V., Hato S., Bardina M. V. et al. Nucleocytoplasmic traffic disorder induced by cardioviruses // J. Virol. 2006. V. 80. P. 2705–2717. doi:10.1128/JVI.80.6.2705-2717.2006
. Bardina M. V., Lidsky P. V., Sheval E. V. et al. Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery // J. Virol. 2009. V. 83. P. 3150–3161. doi:10.1128/JVI.01456-08
. Mikitas O. V., Ivin Y. Y., Golyshev S. A. et al. Suppression of injuries caused by a lytic RNA virus (mengovirus) and their uncoupling from viral reproduction by mutual cell/virus disarmament // J. Virol. 2012. V. 86. P. 5574–5583. doi:10.1128/JVI.07214-11
. Agol V. I., Belov G. A., Bienz K. et al. Competing death programs in poliovirus-infected cells: commitment switch in the middle of the infectious cycle // J. Virol. 2000. V. 74. P. 5534–5541. doi:10.1128/JVI.74.12.5534-5541.2000
. Agol V. I. Cytopathic effects: virus-modulated manifestations of innate immunity? // Trends Microbiol. 2012. V. 20. P. 570–576. doi:10.1016/j.tim.2012.09.003
. Koonin E. V., Dolja V. V. A virocentric perspective on the evolution of life // Curr. Opin. Virol. 2013. V. 3. P. 546–557. doi:10.1016/j.coviro.2013.06.008

Раковые клетки в экспериментальных условиях можно пересаживать из одного организма в другой, поддерживая тем самым существование опухоли значительно более длительное время, чем может жить организм, в котором они возникли.

Поэтому если в наиболее общей форме определять, чем отличается раковая клетка от нормальной, то различие заключается в следующем: раковые изменения превращают обычную телесную (соматическую) клетку с ограниченным временем жизни в потенциально бессмертную. Такая клетка как бы становится организмом без внутренних причин смерти, длительность жизни которого определяется состоянием среды обитания, подобно тому как это имеет место у некоторых видов простейших организмов. Следовательно, механизм ракового перерождения закреплен в аппарате наследственности клетки, то есть рак - это прежде всего проблема клеточная.

Именно поэтому основные усилия ученых направлены на разгадку главной тайны рака: выяснение механизма злокачественного превращения клетки. На этом пути достигнуты значительные успехи. Прежде всего определены многие факторы, которые могут вызывать развитие раковой опухоли.

Во-первых, к таким факторам относится ряд химических веществ, или, как их называют, канцерогенов. Если в начале 30-х годов прошлого столетия был известен один химический канцероген, то сейчас их насчитывается несколько сотен. Весьма наглядно значение канцерогенов в развитии рака выявлено на примере курения. Смертность от рака легкого среди курильщиков в 10 раз выше, чем среди некурящих. Если же выкуривается 25 и более сигарет в день, то этот показатель увеличивается в 20 раз. Во-вторых, рак может быть вызван определенными физическими воздействиями, например ультрафиолетовыми лучами. В-третьих, некоторые вирусы, несомненно, вызывают рак. В-четвертых, избыток определенных гормонов вызывает появление рака в определенных органах.

Рассмотрение факторов, вызывающих появление рака, позволяет прежде всего увидеть, сколь мало между ними общего. Между тем все они стимулируют появление раковых клеток, обладающих одним общим свойством - потенциальным бессмертием. Вот почему вполне естествен вывод, что различные по своей природе факторы - химические, лучевые, вирусные, гормональные - действуют в конечном итоге на один и тот же элемент нормальной клетки, превращая эту клетку в раковую. Соответственно считают, что путь к выяснению природы рака лежит через обширную область познания механизма нормальной регуляции клетки. Поиски этого механизма представляют в настоящее время один из наиболее волнующих разделов биологии клетки и биологии рака. И все же этими фундаментальными проблемами не исчерпывается тайна рака. Обратимся еще раз к химическим канцерогенам.

Как известно, заболевание раком значительно учащается с возрастом. Между 20-ю и 65-ю годами, например, частота рака увеличивается почти в 100 раз. Принято считать, что это нарастание обусловлено увеличением длительности экспозиции человека к действию разнообразных химических канцерогенов; ведь известно, что чем выше доза канцерогена, полученная за определенное время организмом, тем выше вероятность возникновения рака. Однако подкупающая наглядность таких фактов во многом упрощает существо дела - webpolyglot.ru. Рассмотрим результаты одного из современных экспериментальных наблюдений. В процессе селекции (отбора) были выведены так называемые раковые линии, или породы, животных, в частности раковые линии мышей. У одной из таких линий к пятому месяцу жизни в 71% случаев возникает рак молочной железы. Вместе с тем, когда пищевой рацион животных был искусственно ограничен с 16 до 10 калорий в день, то к этому же сроку ни у одной мыши опухоли еще не возникали.

Данное наблюдение не является уникальным. Начиная с 40-х годов прошлого века, накапливаются подобного рода результаты, показывающие, что вероятность развития рака определяет не только время действия канцерогенного агента, но и состояние организма.

Но, может быть, все то, что получено в эксперименте, не имеет отношения к возникновению рака у человека? Нет, напротив, многочисленные статистические наблюдения свидетельствуют: ожирение увеличивает вероятность возникновения всех видов опухолей у человека. Следовательно, если развитие рака зависит от длительности влияния канцерогенных факторов, то у тучных время течет быстрее. Даже зависимость между курением и возникновением рака не столь однозначна, как это многим представляется. Ведь из 10 курящих рак легких возникает примерно у одного человека. Однако если среди курящих имеются лица с повышенным уровнем холестерина в крови, то вероятность возникновения рака увеличивается в 7 раз по сравнению с теми, у кого концентрация холестерина в крови снижена. Да и вообще, когда имеется в виду, что канцерогенное действие пропорционально длительности влияния канцерогенного агента на человека, надо помнить, что фактор времени не только может увеличивать дозу канцерогена, получаемую организмом, но и сам организм изменяется во времени, подчиняясь процессу старения. В частности, по мере старения закономерно увеличивается содержание жира в теле, то есть развивается возрастное ожирение.

Как же может быть объяснено замедление наступления "ракового возраста" при ограничении калорийности диеты в эксперименте и, наоборот, ускорение "канцерогенного времени" при избыточном уровне холестерина?

Представляется наиболее логичным искать это объяснение в пределах тех же закономерностей, которые определяют возрастное развитие атеросклероза и метаболической иммунодепрессии, или даже в более общей форме тех законов, которым подчиняются развитие и рост организма.

Отвлечемся от вопроса о том, что именно способствует возникновению рака: вирус, химический канцероген или самопроизвольная ошибка в строении ДНК- аппарате наследственности клетки (спонтанная мутация). Какой бы фактор ни оказался главным, обязательным условием развития рака является деление клетки. Это условие настолько существенно, что клетки, которые во взрослом организме утрачивают способность к делению, вообще не превращаются в раковые клетки. С другой стороны, если используются определенные воздействия, увеличивающие интенсивность деления клеток, то одно лишь это приводит к возникновению опухолей. Например, если у животного заставить интенсивно делиться клетки щитовидной железы, то можно закономерно вызвать рак.

Интересен следующий эксперимент. Когда с пищей и с водой в организм поступает мало йода, который является составной частью гормона щитовидной железы, то концентрация этого гормона в крови снижается. Это снижение, ослабляя механизм отрицательной обратной связи, ведет к усилению деятельности того отдела гипоталамо-гипофизарной системы, который стимулирует функцию щитовидной железы. В результате повышенной стимуляции клетки щитовидной железы усиленно делятся, что увеличивает "рабочую площадь" органа. Такое компенсаторное увеличение направлено на восполнение недостатка гормона щитовидной железы. Но так как йода для построения гормона все же не хватает (по условиям эксперимента его содержание в пище и в воде снижено), то равновесие не восстанавливается и щитовидная железа пребывает в состоянии постоянной повышенной стимуляции, направленной к увеличению интенсивности деления ее клеток. В такой "перевозбужденной" железе возникают доброкачественные, а если избыточная стимуляция продолжается достаточно долго, то и злокачественные опухоли. Однако если в стадии возникновения доброкачественных опухолей начать вводить животным гормон щитовидной железы, равновесие в системе восстанавливается и развитие рака предотвращается.

Этот пример показывает, что одним из условий, способствующих развитию рака, является усиление деления клеток. Такое деление может возникать как под влиянием специализированных факторов регуляции, например гормонов, так и вследствие сдвига обмена на жировой путь обеспечения энергией, как это наблюдается, например, при ожирении.

Второе важное условие, способствующее развитию рака, - снижение активности противоопухолевого иммунитета.

Крупнейший австралийский иммунолог Ф. Бэрнет развил идею о существовании "иммунологического надзора", который защищает организм от "чужих" клеток. Это явление хорошо известно. Оно наблюдается при пересадках (трансплантации) органов, например сердца или почки, а также при лечении некоторых болезней. Но, конечно, подобная ситуация не встречается в естественных условиях, за исключением периода беременности, когда иммунологический надзор материнского организма может вызвать отторжение плода, поскольку в нем, как в трансплантате, сочетаются и "свои" - материнские, и "чужие" - отцовские антигены. Ученый предположил, что действие иммунологического надзора направлено также против опухолевых клеток - webpolyglot.ru. Действительно, имеется достаточно доводов в пользу того, что злокачественные клетки возникают в каждом организме постоянно. Но развитие опухолей из этих клеток происходит во много раз реже, чем можно было бы ожидать. Однако при генетической (врожденной) недостаточности трансплантационного иммунитета у детей или при токсическом влиянии на иммунитет некоторых веществ частота возникновения рака увеличивается враз по сравнению с обычной.

Эти наблюдения показывают, что эффективность иммунологического надзора зависит от состояния системы клеточного иммунитета. Между тем сейчас хорошо известно, что активность клеточного иммунитета снижается с возрастом примерно на 50% к 50 годам.

В течение многих лет считалось, что возрастное снижение активности клеточного иммунитета связано с изменениями в самой иммунной системе, возникающими вследствие угасания деятельности тимуса - регулятора клеточного иммунитета. Однако когда мы, исходя из представлений о метаболической иммунодепрессии, нормализовали обмен веществ у людей в возрастелет, то улучшились, а в ряде случаев и восстановились показатели клеточного иммунитета. Более того, вероятно, именно сочетание нарушений, вызывающих метаболическую иммунодепрессию и способствующих развитию атеросклероза, создает также условия для усиленного деления соматических (телесных) клеток.

Таким образом, воссоздаются оба условия, ускоряющие развитие рака. Сочетание этих двух условий, определяемых одними и теми же гормонально-обменными сдвигами, и было обозначено мною словом "канкрофилия" - буквально "любовь к раку".

В механизме канкрофилии, возникающей в процессе нормального старения, нет ничего выходящего за пределы тех физиологических сдвигов, которые отчетливо прослеживались на примере беременности. Действительно, аналогичные обменные сдвиги и вызывали подавление трансплантационного (а следовательно, и противоракового) иммунитета, и обеспечивали быстрое увеличение клеточной массы плода (а следовательно, могли бы повышать вероятность развития рака в любой интенсивно делящейся клеточной системе). Однако все, что происходит снаружи клетки, то есть во внутренней среде организма, откуда в клетку поступают энергетические ресурсы и строительные материалы, может повлиять на поведение клетки, например на ее способность к воспроизведению (размножению), но не может превратить нормальную клетку в раковую. Для такого злокачественного превращения должны произойти изменения в аппарате наследственности клетки, ее генах: ведь свойство злокачественности закреплено в раковой клетке, а не в свойствах организма.

На природу ракового превращения клетки имеются различные взгляды. Пожалуй, полнее всего описывает это явление вирусно-генетическая модель. Согласно этой модели определенные вирусы, вызывающие саркому или рак, соединяются с генетическим материалом ядра клетки, ядерной ДНК. После этого сам вирус в клетке уже не может быть обнаружен: он стал частью генов клетки-хозяина. Изменение аппарата наследственности, произведенное вирусной ДНК, и придает клетке свойство злокачественности. Но так как размеры вирусной ДНК неизмеримо меньше ДНК клетки, то долгое время вообще не удавалось обнаружить "пропавший вирус", и только необычное поведение раковой клетки указывало, что произошло злокачественное превращение. Тем более таинственным оставался сам механизм злокачественного превращения, несмотря на многочисленные попытки решить эту загадку.

Отвлечемся пока и мы от этой сложной проблемы и по изменениям поведения раковой клетки попытаемся составить представление о том, что произошло в генах, подобно тому как врач нередко судит об инфекционной болезни не по микробам, вызвавшим болезнь, а по особенностям температурной кривой организма. Мы уже знаем, что наиболее необычным в поведении раковой клетки является ее безудержная способность к воспроизведению, или делению. Но размножение требует привлечения дополнительной энергии и структурных материалов для построения новых (дочерних) клеток.

И нормальная и раковая клетки потребляют как топливо главным образом глюкозу. Известно, что глюкоза может энергетически использоваться или в цикле брожения, то есть давать энергию без участия кислорода, и тогда конечным продуктом цикла является молочная кислота, или в цикле дыхания (с потреблением кислорода), в котором конечными продуктами являются углекислый газ и вода. Но при затрате одного и того же количества глюкозы выход энергии при брожении теоретически в 18 раз ниже, чем при дыхании. Клетки, которые вначале получали энергию лишь за счет брожения, в процессе эволюции приобрели способность к дыханию, что резко увеличило их энергетическое обеспечение. Поэтому естественно было ожидать, что раковые клетки, которые особенно интенсивно используют энергию, обладают более интенсивным дыханием.

Однако еще в 30-е годы прошлого столетия в классических исследованиях немецкого ученого Отто Варбурга было показано, что в раковых клетках, напротив, враз увеличена интенсивность брожения. Поэтому ученый предположил, что процесс перерождения клетки в раковую вызывается повреждением митохондрий - аппарата дыхания клетки. Переход на древний, бескислородный способ энергетики приводит к автономному бесконтрольному существованию клетки: она начинает вести себя как самостоятельный организм, стремящийся к воспроизведению (подобно дрожжам и микробам). В дальнейшем было выяснено, что в раковых клетках наряду с интенсивным брожением осуществляется дыхание, то есть эти клетки черпают энергию из двух обычно взаимоисключающих друг друга источников. Это подорвало основу раковой теории Варбурга. Однако не отменило того факта, что раковые клетки поглощают из среды обитания враз больше глюкозы, чем нормальные, за счет чего накапливаюткратное количество молочной кислоты. Каким же образом возникает феномен Варбурга?

Обратимся еще раз к аналогии между микроорганизмами и раковыми клетками. Микробы могут или находиться в "дремлющем" состоянии покоя, когда нищи не хватает, или интенсивно делиться, когда достаточно пищи в среде их обитания. Совсем другая ситуация наблюдается у многоклеточных организмов, у которых одна клетка непосредственно прилегает к другой, образуя сплошную ткань. В такой упорядоченной системе беспрерывное деление только бы нарушало структуру и деятельность ткани - webpolyglot.ru. Более того, у многоклеточных организмов содержание глюкозы в крови и лимфе намного выше, чем в естественной среде обитания одноклеточных организмов. Если последним, по существу, всегда угрожает голод и поэтому они приспособлены к улавливанию минимальных количеств питательных веществ из среды обитания, то у клеток высших организмов всегда обеспечена "сладкая жизнь": в 1 миллилитре крови содержится в норме примерно 1 мг глюкозы.

Но если бы у высших организмов глюкоза беспрепятственно поступала внутрь клетки, то это заставляло бы клетки размножаться сверх меры, подобно тому как размножаются микроорганизмы в обогащенной питательной среде. Поэтому оболочка клетки у высших организмов является практически непроницаемой мембраной для глюкозы. Поступление глюкозы в такую клетку происходит благодаря действию специальных веществ, главным образом инсулина. В этом нельзя сомневаться: при поражении поджелудочной железы, когда снижается в крови содержание инсулина и возникает сахарный диабет, клетки начинают голодать, несмотря на значительное повышение в крови содержания глюкозы. Для многих тканей существуют дополнительные факторы роста, но все они обладают инсулиноподобной активностью, то есть обеспечивают поступление глюкозы внутрь клетки.

Теперь вновь обратимся к раковой клетке. Такая клетка обладает усиленной способностью к делению, в ней враз увеличен процесс брожения глюкозы по сравнению с нормальной. Замечено также, что раковая клетка продолжает делиться, даже если содержание в среде инсулина и других факторов роста снижено в 10 раз.

Естествен вопрос: чем обусловлена повышенная чувствительность раковой клетки к инсулину и родственным ему факторам? Важность ответа на этот вопрос еще более возросла в самое последнее время, когда рядом ученых было установлено, что превращение нормальной клетки в злокачественную вызывается лишь одним из нескольких вирусных генов, соединившихся с генами ядра клетки. Известно, что один ген может обеспечить производство одного белка. Следовательно, действие одного лишь белка изменяет поведение клетки от нормального к злокачественному. Этот белок уже выделен из опухоли и обозначен как р 60 (по молекулярному весу 60000), или трансформирующий белок. По функции он оказался протеин-фосфокиназой - ферментом, способным присоединять фосфатную группу к различным белкам. Что же должен сделать этот белок, чтобы клетка стала вести себя как злокачественная и, в частности, встала бы на путь непрерывного деления?

В этом отношений допустимо предположить, что трансформирующий белок р 60 (или другой родственный ему белок) повышает чувствительность клетки к действию инсулина и инсулиноподобных факторов. Благодаря этому поток глюкозы в клетку увеличивается, подобно тому как это происходит у микробов в среде, обогащенной глюкозой. Одновременно, как мы полагаем, р 60 путем фосфорилирования усиливает активность двух ферментов - гексокиназы и фосфокиназы, которые контролируют распад глюкозы на общем участке ее сгорания в процессе брожения и дыхания. Но так как р 60 не влияет на цикл дыхания (окисления глюкозы), то неизбежно усиливается цикл брожения. Это приводит к накоплению молочной кислоты - конечного продукта брожения (так возникает эффект Варбурга). Следовательно, эффект Варбурга не имеет прямого отношения к процессу злокачественного перерождения клетки. Он присущ всем быстроделящимся клеткам (например, клеткам крови), так как скорость деления и интенсивность поглощения глюкозы взаимосвязаны. А именно поступление глюкозы в клетку является началом сигнала, вызывающего деление клетки.

В частности, усиление потока глюкозы снижает в клетке концентрацию особого вещества - циклического АМФ, что, как считают многие исследователи, приводит в действие механизм клеточного деления. Одним из элементов этого механизма является усиление синтеза холестерина, обусловленное снижением концентрации в клетке циклического АМФ.

Конечно, деление клетки прежде всего должно обеспечивать передачу наследственности, заключенной в генах ядра. Однако вступает ли клетка в процесс деление или нет, определяется степенью обеспеченности клетки холестерином (как каркаса клеточной мембраны). Если, например, у лимфоцитов, которые встретились с врагом-антигеном, затормозить синтез холестерина, то не включается механизм удвоения ДНК в ядре и клетка не вступает в процесс деления. К удивлению многих, выяснилось, что поведение клетки, то есть ее готовность размножению, определяется не ядром, а клеточной мембраной. Но если следовать здравому смыслу, разве "разумно" было бы клетке начинать процесс деления, не обеспечив себе ограду из мембраны. Кроме того, недавно стало известно, что один из промежуточных продуктов синтеза холестерина - мевалоновая кислота - непосредственно стимулирует механизм синтеза ДНК в ядре, подготавливая тем самым ядро к передаче генетического материала.

Таким образом, когда под влиянием трансформирующего белка глюкоза непрерывно поступает в клетку, то это порождает каскадный сигнал, вызывающий в конечном итоге непрерывное деление клетки. Иными словами, под влиянием трансформирующего белка усиливается поступление глюкозы в клетку, раковая клетка начинает вести себя как одноклеточный организм, который "ест и делится", тем проявляя свою способность к потенциальному бессмертию. Поэтому если в экспериментальных условиях удается нормализовать использование глюкозы, то исчезают и все другие признаки злокачественной клетки (это явление наблюдается в опухолях, возникающих в результате действия так называемых температурозависимых вирусов).

Теперь подведем итоги . Мы уже подчеркивали, что злокачественная опухоль может быть порождена столь различными воздействиями, как вирусы, химические канцерогены, ультрафиолетовый свет, гормоны. Но все эти факторы приводят к появлению злокачественных клеток, обладающих одинаковыми биологическими свойствами (прежде всего свойством потенциального бессмертия - webpolyglot.ru). Следовательно, чтобы глубже понять природу рака, надо найти ответ на вопрос: каким образом столь различные факторы вызывают одинаковый биологический эффект? Отсутствие приемлемого ответа на этот вопрос связано не только со сложностью самой задачи, но и с тем, что попытки ее решения производятся или исключительно на уровне клеточных механизмов, или на уровне организма. В свете представлений о канкрофилии можно учитывать оба этих условия.

Что касается вирусного канцерогенеза, то общепринято, что вирус, вызывающий рак, вносит в ядро клетки ген, определяющий высокую продукцию трансформирующего белка. Этого достаточно для превращения нормальной клетки в раковую. Продукция клеткой этого белка может, вероятно, увеличиваться и под влиянием других, невирусных факторов, так как сейчас обнаружено присутствие аналогичного гена в нормальных клетках у всех животных -от птиц до высших млекопитающих. В нормальной клетке этот ген, однако, малоактивен. Возможно, что химические канцерогены, повреждая гены, могут путем изменений, обусловленных этими повреждениями, активизировать продукцию трансформирующего белка и тем самым вызвать превращение нормальной клетки в раковую.

Следует отметить, что трансформирующий белок обнаружен пока лишь при специальном типе злокачественных клеток - саркоме. Но тот факт, что не только клетки саркомы, но и рака усиленно поглощают глюкозу, позволяет считать, что повышенная продукция трансформирующего белка присуща любой злокачественной клетке. Недавно это предположение было подтверждено.

Что касается ультрафиолетовых лучей (равно как и некоторых других видов лучевых воздействий), то они также вызывают мутации и в этом отношении их эффект во многом аналогичен влиянию химических канцерогенов. Влияние большинства гормонов на возникновение рака может быть объяснено усилением интенсивности деления клетки, что увеличивает вероятность внедрения в ее генетический аппарат вируса или повреждения генов химическим канцерогеном. Кроме того в процессе интенсивного деления клеток возникают и "самопроизвольные" мутации, которые могут вызвать рак, вследствие увеличения продукции трансформирующего белка.

Некоторые гормоны, например стрессорные гормоны кортизол и адреналин, снижают противоопухолевый иммунитет, а это увеличивает вероятность того, что "случайно" возникшая опухолевая клетка получит возможность развития в опухоль.

Наконец, ряд гормонов способствует нарушению обмена веществ, что приводит к формированию канкрофилии. Подобным образом действует, например, избыток инсулина, так как этот гормон вызывает ожирение со всеми вытекающими отсюда последствиями. В частности, сейчас выясняется, что повышение уровня холестерина в лимфоцитах, вероятно, ухудшает способность генов ядра к восстановлению после повреждения, например, ультрафиолетовым светом. Если это так, то обменные сдвиги, свойственные канкрофилии, не только вызывают метаболическую иммунодепрессию и стимулируют деление клеток, но и ухудшают возможность производить "ремонт" ДИК для устранения раковой мутации. Поэтому нарушение репарации ДНК, вызванное нарушением обмена, является третьим фактором канкрофилии.

Так создаются условия для возникновения рака, или канкрофилия. Но канкрофилия - "любовь к раку", как и любовь вообще, может быть или преходящей (если канкрофилия возникает под влиянием стресса или избыточного питания), или постоянной (когда в основе канкрофилии лежит нормальный или ускоренный процесс старения). В этой связи нельзя не обратить внимание на два поразительно близких явления, одно из которых проявляется как бы снаружи клетки, а другое - изнутри. В первом случае речь идет о возрастном увеличении в крови инсулина в процессе нормального старения, или, что одно и то же, при наличии ожирения. Все инсулиноподобные факторы действуют снаружи клеточной мембраны. Следовательно, они не могут превратить нормальную клетку в раковую. Но они могут временно придать нормальной клетке свойства, при которых повышается вероятность ее перерождения. Вместе с тем поразительно то, что такие же условия обмена веществ необходимы и для проявления свойств самой раковой клетки: усиление питания и усиление синтеза холестерина. Только создаются эти условия факторами, действующими изнутри клетки.

В свете представлений о канкрофилии удается объяснить и роль ряда факторов, оказывающих ускоряющее или замедляющее влияние на развитие рака. Отрицательные психические эмоции и психическая депрессия, которые, как сейчас обоснованно считают, способствуют возникновению (или более быстрому течению) опухолевого процесса, действуют в этом отношении подобно хроническому стрессу. Аналогичным образом все те факторы (или состояния), которые нарушают чувствительность гипоталамуса к регулирующим сигналам либо усиливают использование жира как топлива, способствуют возникновению рака. Так, избыточное освещение (помимо того что ультрафиолетовая часть спектра вызывает определенные мутации в генах) повышает порог чувствительности гипоталамуса к регулирующим сигналам. Доказательством служит то, что в эксперименте на животных с помощью такого светового режима воспроизводятся некоторые виды опухолей.

Усиленная мобилизация жира, вызываемая никотином или избыточным поступлением кофеина из чая и кофе, также в экспериментальных условиях усиливает развитие рака. Да и многие химические канцерогены, как видно, способствуют появлению опухолей не только вследствие повреждения генов, но и вследствие вызываемого ими нарушения обмена веществ.

Наконец, сама опухоль действует на организм таким образом, что в нем происходят нарушения обмена веществ, как и при обычной канкрофилии.

Напротив, все то, что нормализует деятельность гипоталамуса и уменьшает использование жира как топлива, служит профилактике рака. Таким именно путем оказывает свое благотворное влияние рациональная диета, высокая физическая активность и антидиабетический препарат - фенформин.

При изучении любой болезни исследователи стремятся выяснить причину ее возникновения, или этиологию (этио - причина) и механизм ее развития, то есть патогенез (патос - страдание). Исходя из того, что рак может развиваться под влиянием различных причин (вирусов, химических канцерогенов, физических факторов и гормонов), выдающийся онколог Н. Петров назвал рак полиэтиологическим (многопричинным) заболеванием. Но если учесть, что все эти причины вызывают одни и те же изменения в деятельности клетки, то можно сказать, что рак является полиэтиологическим, но монопатогеническим заболеванием. Это означает, что все причины его возникновения "запускают" один и тот же механизм злокачественного превращения клетки - webpolyglot.ru. В этом механизме существенную роль играет действие трансформирующего белка. Он увеличивает чувствительность клетки к действию инсулина и инсулиноподобных факторов роста, как теперь показано, путем увеличения количества их рецепторов. Тем самым создается непрерывность потока глюкозы в клетку, что и определяет ее поведение как раковой клетки.

Учитывая все это, можно утверждать, что одним из реальных способов, с помощью которых можно затормозить возрастное увеличение частоты рака, даже не познав еще до конца его природы, является нормализация обменных процессов. Однако трудности на этом пути еще достаточно велики. Это во многом связано с тем, что даже при самых благоприятных условиях внешней среды по мере старения закономерно, хотя и с различной скоростью, возникают нарушения гомеостаза. Это делает старение самой универсальной болезнью, и не только потому, что оно свойственно всем, но и потому, что несет с собой основные признаки всех нормальных болезней.

Качественное и надёжное обслуживание (ведение, администрирование) вебсайтов,

интернет-магазинов, витрин, блогов, форумов и других web проектов недорого.

Полное администрирование сайтов, включая наполнение контентом и продвижение.

Методологические, методические проблемы и практические показатели развития человека

При цитировании отдельных материалов с сайта обратная свободно индексируемая ссылка строго обязательна

Вирусная природа рака

Профилактическая медицина родилась тысячи лет назад еще при Моисее. В Библии говорится, что именно Моисей, вдохновленный Богом, создал первый в истории кодекс здоровья. Моисей не только ввел карантин при инфекционных заболеваниях, он разработал целый комплекс особых санитарно-эпидемиологических мер, включая удаление нечистот. Моисей на века опередил свое время в понимании и лечении болезней.

Каковы причины рака

В настоящее время известно более 50 вирусов (разновидности как РНК, так и ДНК), которые вызывают рак у животных.

Возможно Вас заинтересует:

Регистратура: (3,-6689,

Природа раковых клеток

Ученые раскрыли тайну

роста. Может ли быть создано одно, универсальное лекарство для успешного лечения хотя бы большей части всех видов злокачественных опухолей?

При существовании единого, общего для них всех механизма роста - это вполне возможно.

Признаёт ли современная наука наличие в природе такого механизма?

Доктор биологических наук А. Н. Лучник (Институт биологии РАН) в своих недавно опубликованных статьях утверждает и доказывает: да, такой механизм имеется во всех злокачественных опухолях, и подробно описывает суть его разрушительного действия. Вкратце это выглядит так:

Универсальный саморазгоняющийся двигатель ракового роста устроен на удивление просто.

Известно: чем проще какое-либо устройство, тем труднее его сломать. Особенно же трудно остановить двигатель, соединённый с шофёром (больным организмом) в одно целое.

Каким образом такой шофёр-кентавр будет чинить расположенный внутри него самого забарахливший движок? Станет ли вливать в себя серную кислоту вместо масла и топлива? Начнёт ли отрезать от себя и выбрасывать вон без замены отказавшие узлы и детали?

Для разумного человека ответ очевиден. Вот организм наш и не «чинит» свои повреждённые органы и системы подобными издевательствами. Неудержимость и неуязвимость рака объясняются тем, что он здравое желание организма поскорее «починиться» приспособил к обслуживанию своих корыстных интересов.

Механизм ракового роста запускает. сам организм, тотчас после перерождения некоторого количества его нормальных клеток в раковые (по-научному последнее именуется «малигнизацией»). И этот механизм не зависит от причин, вызвавших малигни-зацию клеток, и является универсальным для любой злокачественной опухоли.

Главная причина появления раковой опухоли -сбой в работе генетической защиты организма от малигнизированных («неправильных») клеток.

Если некоторые важные гены «ослабли» и допустили зарождение раковой опухоли, то больше ничто в организме её рост не остановит без лечения. Разница может быть только в сроке трагического финала.

Как было образно сказано выше, организм больного нисколько не стремится убить раковую опухоль. Наоборот, он всячески помогает ей как можно быстрее расти и делиться: кормит её, поит, насыщает кислородом. То есть вроде как занимается самым настоящим самоуничтожением! Отчего же?!

А всё потому, что организм воспринимает растущую опухоль как незаживающую рану и пытается лечить её, как обычно - путём стимуляции роста её клеток. Ученые долго пытались выяснить, как же конкретно опухоли заставляют обслуживать себя систему заживления ран организма.

Было доказано, что в любой раковой опухоли всегда часть клеток погибает без всякой видимой причины, как бы «сама собой».

Нормальные клетки могут погибать от алоптоза (запрограммированного в их ДНК саморазрушения), или от некроза (омертвения от внешних причин).

Современная теория канцерогенеза (ракового роста) выявила инактивацию при раке некоторых генов.

Наиболее важен ген р53 и продукт его работы - одноименный белок. Он контролирует упомянутый выше апоптоз, клеточный цикл и деление, стабильность генома. Если в р53 произойдут нарушения, то клетка превратится в раковую.

Точно установлено, что в раковых клетках ген р53 не работает и апоптоз не происходит. Они могут делиться теоретически бесконечное множество раз.

Если же клетки погибают не от апоптоза, а из-за повреждений, вызванных нарушением кровообращения, ядами, порезами, ударами, облучениями и т. п. то это называют некрозом.

Только при некрозе клетки выделяют в окружающую среду так называемые «факторы роста» - вещества, заставляющие организм резко увеличивать поставки питательных веществ и кислорода в место их гибели и одновременно наращивать там сеть новых кровеносных сосудов.

Доктор наук A. R Лучник сумел найти и убедительно обосновать принцип, лежащий в основе ракового «самообслуживания». Сформулировал он его так:

«Обший универсальный принцип генетической нестабильности в любых злокачественных опухолях.

Раковая клетка имеет наследуемые участки с одной нитью ДНК в одной или нескольких хромосомах (при лейкозах -часто и во всем геноме) вместо обычной для здоровой клетки системы из двух нитей-молекул ДНК. В каждом поколении таких клеток возникают случайные разломы хромосом с частотой примерно 1-30 %.

Если клетка с разломанной хромосомой делится, то две её дочерние клетки с высокой вероятностью погибают путём некроза. Если таких погибающих клеток примерно 10 % от общего количества клеток опухоли, то система заживления ран организма начинает активно способствовать ускоренному росту и делению раковых клеток».

Поэтому чем больше люди травят раковые опухоли разными ядами, жгут облучениями, режут ножами хирургов и протыкают при биопсиях и пункциях - тем злее эти опухоли становятся, быстрее растут и метастазируют.

ЭТО ЧРЕЗВЫЧАЙНО ВАЖНЫЙ ВЫВОД

Проблема ещё и в том, что чем сильнее яды, которыми врачи потчуют опухоль, тем выше вероятность гибели больного от самого такого лечения, и быстрее, чем от рака. Помните «шофёра-кентавра» из начала этой статьи?!

Чрезмерное увлечение ученых и медиков инквизиторскими методами и затрудняло до сих пор создание универсального противоопухолевого средства.

Они решают проблему однобоко, не обращая внимания на организм в целом. Не задумываются о реальной причине развития этих новообразований. Организм по своей природе - сбалансированная система которую очень сложно вывести из строя. Но наш современный образ жизни, экология, продукты питания - состоящие всё больше и больше из химии, - в общем вы и сами это понимаете. Но что с этим делать.

В первую очередь - полюбить себя, отнестись к себе, не как к отдельной личности, а воспринять себя частью огромного организма - маленькой клеточкой в теле Бога. Ведь мы он и есть. Мы не можем жить собственной эгоистичной жизнью в этом теле - этим мы разрушаем сбалансированность системы в целом и тем самым подвергая опасности не только себя, но и весь организм, ведь в нём всё взаимосвязано. Оставляя больше себе мы засоряем себя шлаками, в тоже время кто то другой это недополучает и страдает от этого, и так по цепочке страдает всё тело.

Простите ВСЕХ кто вам причинил беды, ведь ошибаются все - а ваша обида и злость причиняют огромнейший вред не только им, но и вам - ведь все мы одно целое.

Вы можете не поверить, - но изменив только себя, и своё отношение к другим, искренне простив их и желая им добра вы избавитесь от этой "злой" болезни. Были случаи, когда человек переосмыслив свою жизнь, избавлялся от рака в течении одной - двух недель.

А также прочитайте:

Новая Криптовалюта

Поиск

Все о вашем здоровье | Альтернативная медицина | Рецепты | Лечение | Болезнь

Все про ваше здоров"я | Альтернативна медицина | Рецепти | Лікування | Хвороба

Все права защищены действующим законодательством Украины и международными соглашениями.

Поширювати матеріали сайту дозволяється тільки з посиланням на цей сайт.

Будь-яке інше поширення матеріалів суворо заборонено.

Всі права захищені діючим законодавством України та міжнародними угодами.

Природа раковых клеток

С тех пор как Ричард Никсон официально объявил войну с раком посредством подписания Американского противоракового закона, более ста миллиардов долларов из средств налогоплательщиков было потрачено на исследования и разработку лекарств в попытке уничтожить болезнь, триллионами больше потратили сами больные, но результаты остаются неутешительными.

Даже после сорока лет ведения комплексной «традиционной» (хирургия и химеотерапия) и «ядерной» (лучевая терапия) войны против рака, у каждого четвёртого диагностируется это заболевание – и, если верить прогнозам, число заболевших продолжит неуклонно расти.

Может, это грандиозное поражение отражает тот факт, что природа рака была истолкована в корне неверно, а вместе с тем ошибочны и наши попытки предотвратить или вылечить его?

Итак, вопрос, на который заново должен быть дан ответ: что такое рак?

Возможно, мы должны вернуться к фундаментальному вопросу: что такое рак? В конце концов, до тех пор пока мы не найдём на него точный ответ, все попытки «предотвратить» или «лечить» болезнь, которую мы не понимаем, обречены на провал.

За прошедшие полвека «мутационная теория» представила сложившееся объяснение причины развития рака, согласно которому накопленные мутации в наших клетках приводят некоторых особо уязвимых из них к «сумасшествию». Их «безумное» и «искаженное» поведение является результатом множества разрушительных явлений в ДНК, которая обычно поддерживает их «цивилизованную» активность относительно огромного многоклеточного сообщества в целом – организма. С данной точки зрения эти клетки-изгои беспрерывно размножаются и образуют опухоль, различными способами имитируя характеристики инфекционных процессов в организме хозяина до тех пор, пока новообразование не воспрепятствует жизненно важным процессам, что в итоге приведёт к смерти.

Согласно данной гипотезе, на которую сильное влияние оказала Дарвиновская теория эволюции (иногда её называют «внутренний дарвинизм», который движет эволюцию здоровых клеток в злокачественные), – этот процесс очень похож на естественный отбор, т.е. случайные мутации полезны для выживания и размножения раковых клеток в опухоли. Повреждение ДНК может происходить как путём наследование дефектных ДНК последовательностей («плохих генов»), так и под воздействием разрушительных химических веществ (например, табака) или радиоизлучения.

И хотя эта точка зрения даёт некоторое объяснение, она также может быть ошибочной. Например, один из основных принципов эволюции заключается в том, что случайные мутации почти всегда опасны и приводят к гибели клеток. Однако в таком случае раковые клетки кажутся настоящими «счастливчиками». Вместо того чтобы погибнуть как нормальные клетки, столкнувшись со случайными мутациями, они демонстрируют прямо противоположную реакцию: становятся бессмертными, неспособными подвергнуться запрограммированной гибели, как это происходит со здоровыми клетками.

Тогда действительно ли в основе превращения здоровой клетки в раковую лежит случайность и хаос? Опухолевые клетки, в конце концов, проявляют высоко организованное поведение, поэтому кажется невозможным тот факт, что их стимулируют такие совершенно случайные силы, как мутация…

Раковые клетки (опухоли или новообразования), например, способны построить собственную систему кровоснабжения (ангиогенез), способны защитить себя сайленсингом подавляющих рак генов и активацией генов-инициаторов опухолей, выделением ферментов агрессии, чтобы свободно перемещаться по всему организму, они способны изменять свой метаболизм, чтобы жить в среде с низким содержанием кислорода, высоким содержанием сахара и повышенной кислотностью, а также знают, как удалить свои собственные поверхностные рецепторы, чтобы избежать обнаружения лейкоцитами.

Могут ли эти сложные поведенческие модели быть результатом случайной мутации? И возможно ли, что случайные мутации могут привести к формированию тех же «удачных» наборов генетических свойств каждый раз, когда в организме человека образуются новые формы рака?

Случайные мутации, несомненно, играют важную роль в инициации и стимулировании рака, но только их одних не достаточно для полноценного объяснения.

Рак как древняя программа выживания

Выдающаяся теория, представленная учёным из государственного университета Аризоны Полом Дэвисом и учёным из Австралийского национального университета Чарльзом Линевивером, поможет пролить столь необходимый свет на истинную природу рака.

«Рак – это не случайное скопление эгоистичных клеток-изгоев со скверным поведением, а высокоэффективная запрограммированная реакция на стресс, отточенная длительным периодом эволюции».

В своей основополагающей работе, под названием «Раковые опухоли как многоклеточное 1.0: гены далёких предков» Дэвис и Линевивер предположили, что рак является атавизмом, взятым из генетического «арсенала», которому, по крайней мере, миллиард лет, и который до сих пор покоится – обычно дремлет – глубоко в геноме наших клеток. Дэвис называет этот скрытый генетический слой многоклеточное 1.0. Он содержит пути и программы, которые когда-то были необходимы для наших древних клеточных предшественников и их ранних прото-сообществ, чтобы выжить в совершенно иной среде.

Без высокодифференцированных клеток и специализированных органов высших многоклеточных (многоклеточные 2.0), клетки с генетикой многоклеточных 1.0 обладали бы полезными свойствами, которые позволили бы им выжить при прямом контакте с тем, что представляло бы совершенно иную, более жёсткую (для нас) окружающую среду.

Например, миллиард лет назад уровень кислорода в атмосфере был чрезвычайно низким, так как ещё не сформировался фотосинтез, чтобы производить его обильный запас. Это означает, что клеточной жизни в то время пришлось бы учиться развиваться в окружающей среде с низким содержанием кислорода или вообще в бескислородной среде – именно это и делают раковые клетки, используя аэробный гликолиз для выработки энергии вместо окислительного фосфорилирования.

Дэвис и Линевивер кратко изложили своё мнение следующим образом:

«Мы предполагаем, что рак – это атавизм, который возникает, когда генетические или эпигенетические неисправности открывают древний «арсенал» уже существующих приспособлений, восстанавливающих доминирование более раннего слоя генов, которые контролировали свободные колонии лишь частично дифференцированных клеток, похожих на опухоли. Существование такого инструментария предполагает, что прогресс новообразования (рака) в организме хозяина явно отличается от нормальной эволюции Дарвина».

Вместо того чтобы рассматривать такую отличительную черту рака как беспрерывное размножение в качестве заново эволюционировавшего свойства, которым пренебрегла случайная мутация, его следовало бы считать состоянием клетки «по умолчанию», выработанным миллиард лет назад, когда «бессмертие» было первоочередным приоритетом.

Не забывайте, эта древняя совокупность клеток не имела такой дифференциации клеточного типа и специализации тканей, как у высших животных (т.е. кожи, волос, ногтей и др.), для защиты от пагубного воздействия окружающей среды.

Если рак – это разоблачённая древняя программа выживания, то это ещё не означает, что «теория мутации» всё же не содержит в себе доли истины. Генетические повреждения и мутации, по сути, способствуют развитию рака, но вместо того, чтобы рассматривать их как «вызывающие» сложную систему поведения, связанного с раком, точнее было бы предположить, что они выявляют уже существующий набор генетических программ (атавизм).* Например, известно более сотни онкогенов, существующих в нашем ДНК и являющихся общими для широкого спектра различных биологических видов, включая дрозофил, что показывает, насколько они древние (как минимум 600 млн. лет) и универсальные (встречаются в большинстве многоклеточных организмов).

В рамках этого нового способа мышления рак больше не может рассматриваться как некоторый предопределённый ген-бомба замедленного действия, заложенный в нас, или просто как побочный продукт кумулятивного воздействия на генотоксичные вещества.

Cкорее всего, рак – это древняя реакция выживания во всё более токсичной среде, с ненатуральным питанием и ослабленным иммунитетом. Эти клетки научились выживать при постоянных чрезмерных нагрузках, осуществляя постоянное самовосстановление (репликацию) и следуя принципу: всё, что не убивает, делает тебя сильнее.

Рак больше не может рассматриваться как что-то плохое, происходящее внутри здорового организма. Рак является тем, что организм активно предпринимает в ответ на нездоровую клеточную, физическую и планетарную среду. Вместо выражения физического отклонения от нормы, он может быть выражением физического интеллекта и способности наших клеток к выживанию в условиях, которые угрожают разрушить их до такой критической отметки, за которой выживание невозможно.

Это также проливает свет на разрушительный характер химио- и лучевой терапии. Опухоли содержат широкий спектр клеток, многие из которых, по сути, являются доброкачественными (никогда не причинят вред организму), а некоторые из них ещё и сдерживают более вредоносные клетки.

Инвазивные клетки более исконны в своей генетической конфигурации (многоклеточные 1.0) ввиду того, сколько повреждений им приходится переносить в течение их жизненного цикла. Именно эти клетки, которые наиболее устойчивы к химиотерапии, реже умирают при воздействии на них. Следовательно, химиотерапия и лучевая терапия убивают клетки, которые на самом деле не представляют угрозы.

Разумнее рассматривать рак не как «монолитную болезнь», а как симптом ухудшающихся клеточных условий и условий окружающей среды. Другими словами, окружающая среда клетки стала неблагоприятной для её нормального функционирования, и, чтобы помочь ей выжить, в клетке происходят глубокие генетические изменения, повторяющие древние генетические пути, которые мы связываем с раковым фенотипом. Этот «экологический» подход вновь возвращает наше внимание на предотвратимые и поддающиеся лечению причины «болезни», вместо неясной и устаревшей концепции «дефектных генов», на которые мы не в силах повлиять.

По сути, мы должны переключить наше мышление с той точки зрения, что рак является чем-то неестественным, что происходит с нами, на ту, где мы видим, что рак является вполне естественной реакцией нашего организма, чтобы выжить в неестественных условиях. Измените эти условия к лучшему, и от этого вы получите гораздо больше пользы, чем от борьбы с раком, как с врагом.

* Концепцию рака как атавизма можно объяснить следующим образом: атавизм – это более старая генетическая особенность, свойство, которое больше не используется, и поэтому подавляется вновь эволюционировавшими генами. В качестве примера можно привести перепонки между пальцами. Пока мы находимся в утробе матери, они есть у каждого, но в процессе эмбрионального развития они исчезают. Это делается с помощью процесса «программируемой клеточной смерти», также известной как апоптоз. Организм просто включает апоптоз генов в тканях, связанных с перепонками, и эти клетки спокойно разбирают себя, в результате чего мы имеем обычные, свободные от перепонок руки и ноги. Самое интересное, что раковые клетки являются раковыми потому, что они не умирают.

Они либо забыли, как пройти запрограммированную смерть (апоптоз), или были вынуждены из-за травмы (генетического нарушения) или экологической нагрузки (эпигенетического изменения) подавить гены, которые позволили бы им умереть.

Раковые клетки, по сути, скопированы с древнего генетического инструментария, который их предшественники более миллиарда лет назад использовали, чтобы выжить в очень суровых условиях, и где репликация была гораздо более предпочтительным свойством, чем смерть.

Природа и происхождение вирусов

Антигенная изменчивость вируса гриппа и аспекты ее изучения.
Решение получения эффективных аттенуированных вариантов вируса грипп тормозится из-за уникальной пластичности и изменчивости его антигенных свойств. Почти ежегодные эпидемии гриппа через разные интервалы принимают глобальный характер. В последние годы инфектом, вызывающим пандемии, является вирус гриппа А. Анализ антигенных сдвигов внутри каждого из трех его типов показывают, что изменение антигенного состава штаммов вирусов типа АО к типу А происходило постепенно, а переход от типа А1 к А2 бал резким.
После того как в 1957 г было зафиксировано, что в природе появился новый серологический тип А2, он некоторое время казался стабильным, хотя небольшие изменения были. Но уже в 1964 г они стали значительными, а после эпидемии в Гонконге вирусы отличались на столько резко, что возникло предположение о возникновении нового антигенного типа А. В процессе эволюции вируса изменялись не только антигенные свойства поверхностных белков, но и другие признаки. У штамма вируса гриппа, выделенного во время эпидемии 1971-1972 г., в отличие от циркулировавших ранее штаммов значительно повысилась репродуцирующая и нейраминидазная активность, резко возросла термостабильность вирусов и появилась способность регулярно вызывать вирусемию у мышей (Закстельская и др., 1969; Соколов, Подчерняева, 1975).
Если раньше вирусы типа В отличались относительной стабильностью, то с 1967 г. наблюдается его непрерывное изменение (Seihachiro, Mitsuo, 1974). В апреле – мае 1974 г. были выделены новые штаммы вируса гриппа, из них В/Гонконг 15/72 рассматриваются как новый вариант, а другие – как промежуточные между старыми и новыми штаммами, что позволяет пересмотреть данные об антигенной стабильности вируса гриппа В и предположить появление нового серотипа.
Таким образом, вырисовывается картина значительных антигенных изменений внутри типов А и В. Это, естественно, привлекает пристальное внимание ученых, занимающихся проблемой гриппа. Поскольку даже наличие напряженного иммунитета населения не может стать причиной столь крупных антигенных изменений вируса гриппа, была выдвинута гипотеза о периодичности возникающих рекомбинаций между вирусами гриппа человека и животных, а также между вирусами человека и птиц. При разработке этой гипотезы выяснилось, что гриппом в естественных условиях болеют свиньи, лошади, индейки, цыплята, утки, крачки, и список этот продолжает пополняться. В сыворотке крови у них имеются антитела к вирусам гриппа человека. Это неудивительно, так как фрагментарность генома вируса гриппа обуславливается возможность не только внутривидовой, но межвидовой рекомбинации.
Препаративное разделение нейраминидазы и гемагглютинина открывает перспективы углубленного анализа взаимосвязи между отдельными признаками. Некоторые исследователи (Webster a. o., 1973; Горев и др., 1974) отмечают, что вирус - рекомбинант одновременно с гемагглютинином приобретает вирулентности. Имеется набор рекомбинантов, с заданными гемагглютинином и нейраминидазой.
В настоящее время многие вирусологические лаборатории мира изучают эпизоотии гриппа и анализируют антигенные связи с гриппом человека. Работы в этом направлении координируются и стимулируются ВОЗ. Сложность указанной проблемы диктует необходимость неоднозначного подхода к ее решению. Параллельные поиски других подходов к этому вопросу не следует рассматривать как альтернативные.
В 40-50 годах было экспериментально доказано возникновение антигенных вариантов при пассировании вируса в организме иммунизированных животных (Archetti, Horsfoll, 1960). Эти изменения были довольно стойкими, вирусы сохраняли свою новую антигенную специфичность в серийных пассажах in ovo и в отсутствии иммуносыворотки. Более того, длительные пассажи вируса гриппа через организмы неиммунезированных здоровых животных меняют его биологические свойства. Например, K. Paucker (1960) в процессе пассажей штамма PR8 длительно получал вирус, антигенно отличный от исходного и не похожий на другие типы вируса гриппа. Автор полагает, что между 103 и 107 пассажами образовался мутант, заменивший впоследствии исходный вирус. Аналогичные данные приводят K. Zgozelska и др. (1973).
Здесь мы видим проявление основного закона развития любой популяции, в том числе и вирусной, − генофонд популяции со временем меняется: с одной стороны, он обедняется в результате вымирания организмов, заключающих отдельные гены, а с другой − обогащается благодаря мутациям, дающим начало новым генам.
Работы S. Fazekas de Sent Groth, C. Hannoun (1973) по селекции спонтанных антигенных мутантов вируса гриппа А под "иммунопрессом" (т. е. в присутствии иммуносыворотки) позволили воспроизвести иерархический порядок вирусов внутри каждого типа. Причем во всех своих выводах он основывался на показателях перекрестной РЗГА. В опытах по отбору поздних мутантов, полученных с помощью антител, ему удалось воспроизвести естественный процесс селекции эпидемических штаммов. Он же предложил простую модель взаимодействия антитела с антигеном. Автор представил антигенную зону белковой оболочки вируса в виде небольшого числа аминокислотных белковых цепей, выступающих за поверхность вируса. Схематично это имеет вид вилки с зубьями разной длины и ширины, а соответствующие антитела представляют собой полости, комплиментарные по отношению к некоторым или ко всем зубьям. Таким образом, контакт антисыворотки с родственным антигеном приводит к элиминации гомологичных антигенов, и в популяции остаются антигены, имеющие некомплементарные участки, т. е. мутанты.
Эта схема представляет логическое развитие основных положений иммунологии, сложившихся в 40-х годах, о взаимодействии антигена и антитела и теории биосинтеза антител. Согласно этим работам, активная группа антител обладает конфигурацией, дополнительной к конфигурации детерминирующей группы антигена. Предполагалось, что эти группы относятся друг к другу как предмет к своему зеркальному отражению. K. Landsteiner (1946) были поставлены опыты с искусственным антигеном, полученным комплексированием молекул белка с различными низкомолекулярными соединениями, которые показали, что специфичность этого антигена может определяться лишь небольшой группой, присоединенной к белку. Антитела "не узнают" антиген, если он отличается только положением метильной группы в ароматическом ядре от того, которым было стимулировано образование этих антител, или пространственным положением гидроксила (Бойд 1969).
Таким образом, возвращаясь к вопросу антигенной изменчивости вируса, можно констатировать селекционную роль антител в этом процессе. Как возникают мутантные частицы в вирусной популяции – это один из вопросов, на который необходимо ответить для понимания эволюции вирусов гриппа.
Любая вирусная популяция содержит спонтанные мутанты, возникшие в результате действия внешних или внутренних факторов. В зависимости от приобретенных свойств мутант может иметь преимущество в размножении и преобладать в популяции. В некоторых случаях можно уловить тот фактор, который сыграл решающую роль в возникновении мутанта. Наибольший интерес для исследователей, занимающихся проблемой гриппа, представляет пандемия 1918 г., поскольку вирус ее был чрезвычайно патогенным для человека. Ретроспективный анализ этого вируса наводит некоторых исследователей на предположение, что пандемия была вызвана вирусом гриппа свиней, выделенным в 1930 г. так как штаммы имеют антигены, родственные антигенам вирусов свиней. Согласно другой точки зрения, повышение активности вируса вызвано появлением мутантных частиц под действием иприта, который применялся во время Первой Мировой войны, т. е. перед пандемической волной гриппа (Блашкович 1966). Действительно, иприт – чрезвычайно сильный биологически активный химический агент. Его мутагенная активность впервые была показана C. Auerbach и T. M. Robson (1946). Тогда же было выяснено, что иприт оказывает прямое мутагенное действие на хромосомы. Позднее было установлено, что иприт способен вызывать мутации у вирусов и бактерий. Следовательно, возможная его роль как мутагенного агента не исключена, если принять во внимание, что химические и физические факторы могут вызывать генетические изменения биологических объектов всех ступеней развития и вирусы, по-видимому, не составляют исключения.
К числу факторов, которые в естественных условиях могут являться мутагенами, относятся фармакологические препараты. Имеются работы, в которых анализируется связь тератогенной активности и химической структуры молекул лекарственных веществ; у микроорганизмов наблюдается аналогичное явление повсеместного возникновения лекарственно устойчивых мутантных форм. В разгар заболевания гриппом, когда происходит репродукция вируса в организме, больные принимают лекарства, представляющие собой синтетические химические соединения.
Известно, что противовирусные агенты достаточно эффективны только в том случае, если они способны избирательно подавлять синтез нуклеиновых кислот, т. е. соприкасаются непосредственно с генетическим аппаратом. По-видимому, в силу особенностей генома вируса гриппа грань между чисто противовирусным и мутагенным воздействием химических соединений легко переходима.
Наши эксперименты по изучению влияния химических соединений на антигенную специфичность вирусов гриппа, относящихся к серотипу АО, показали, что некоторые соединения из класса супермутагенов, могут вызвать изменения, не выходящие за пределы гомологичного серотипа. В частности, два первых представителя нитрозоалкилмочевин индуцировали мутации по этому признаку (Чуланова, 1968; Ахматуллина и др. 1974). Мы пользовались предложенной нами модификацией РЗГА, которая позволяла устанавливать коэффициент Ап и, основываясь на нем, определять степень различия в антигенной специфичности дикого и мутантных вирусов.
Эксперименты с большим набором химических соединений выявили среди них другой агент – 1,4-бис-диазоацетилбутан, активный в мутации по признаку антигенной специфичности. Мы использовали также метод иммунпресса, после воздействия мутагеном вирус пассировали в присутствии гомологичной сыворотки. Неизмененные вирусные частицы нейтрализовывали комплиментарными антителами, а для индуцированных мутантов создавали селективные условия. Полученные антигенные мутанты были изучены в перекрестной РЗГА с сывороткой к дикому и мутантному вирусу и в реакции преципитации и свидетельствовали о значительных антигенных сдвигах.
Таким образом, дальнейшее экспериментальное изучение индуцированных мутантов с применением большого набора химических соединений позволит внести сведения в изучаемую проблему.

Грипп. Лечение и профилактика.
Грипп – острое инфекционное заболевание верхних дыхательных путей. Сам по себе опасный, грипп усугубляет течений других хронических заболеваний и вызывает серьезные осложнения со стороны сердечно-сосудестой и центральной нервной систем, органов пищеварения, почек, и др. Наиболее опасен грипп для детей и людей преклонного возраста. Быстрота распространения гриппа, тяжесть заболевания, частота осложнений, иногда смертельный исход,- все это делает профилактику его особенно важной. Люди, занимающиеся спортом, гимнастикой, значительно реже подвергаются воздействиям вируса гриппа. Известно несколько разновидностей вируса гриппа – А, В, С, и др.; под воздействием факторов внешней среды их число может увеличится. В связи с тем, что иммунитет при гриппе кратковременный и специфичный, возможно неоднократное заболевание в один сезон. По статистическим данным, ежегодно болеют гриппом в среднем 20-35% населения.
Источником инфекции является больной человек; больные легкой формой как распространители вируса, наиболее опасны, так как своевременно не изолируются – ходят на работу, пользуются городским транспортом, посещают зрелищные места.
Инфекция передается от больного к здоровому воздушно-капельным путем при разговоре, чихании, кашле или через предметы домашнего обихода.
Скрытый период при гриппе длится от 1 – 12 часов до 3 суток. Заболевание начинается остро: резкое повышение температуры до 38-400, озноб, головная боль, боли в костях и мышцах, общая разбитость; возникают боли и першение в горле, расстройство вкуса и обоняния; через 12-24 часа появляются выделения из носа.
Температура держится 1-3 суток, иногда до 6-7 суток. Как правило к концу первой недели температура нормализуется. При правильном лечении и уходе выздоровление наступает через 7-9 дней.
При подозрении на грипп заболевшего следует изолировать и уложить в постель. Это надо сделать до прихода врача. Учитывая, возбудители гриппа очень неустойчивы во внешней среде и легко разрушаются под воздействием кислорода и дезинфицирующих средств, комнату необходимо регулярно проветривать. Не реже одного раза в день проводить влажную уборку помещения с использованием хлорной извести, формалина, соды, хлорамина, хозяйственного мыла.
Больной должен иметь индивидуальную посуду. Столовую и чайную посуду больного надо мыть кипятком с питьевой содой или обрабатывать 5%-ым раствором хлорамина. Обязательна систематическая дезинфекция нательного и постельного белья больного путем кипячения в мыльном растворе.
Все лекарственный препараты, назначенные врачом, следует хранить в специально отведенном месте. Помимо лекарственных препаратов, во всех периодах заболевания целесообразно обильное питье: чай с медом или лимоном, клюквенный морс, теплое молоко, фруктовые и овощные соки. Пища должна быть калорийной. Необходимо строго соблюдать указания врача. Самолечение недопустимо. Лекарства без назначения врача принимать нельзя. Особенно следует предостеречь в отношении антибиотиков и сульфаномидов – на вирус гриппа они не действуют, а при самовольном приеме, и неточных дозировках могут давать аллергические реакции. А вот чем можно воспользоваться безболезненно, так это ножные ванны, горчичники, лук, чеснок. Выделяясь через легкие, эфирные масла, содержащиеся в луке и чесноке, увеличивают отделение слизи и тем самым способствуют более легкому отхаркиванию при заболевании органов дыхания.
Здравоохранение располагает и рядом специфических антигрипозных средств, к числу которых относится в первую очередь живая вакцина и специальная сыворотка, Содержащие защитные белки. Внедрены в практику препараты – интерферон, оксолиновая мазь.
Закаливание, рациональное питание, свежий воздух, своевременное лечение хронических заболеваний помогут вам в профилактике простудных заболеваний, в частности, гриппа.

Современные представления о вирусах складывались постепенно. После открытия вирусов Д. И. Ивановским (1892) их считали просто очень мелкими микроорганизмами, не способными расти на искусственных питательных средах. Вскоре после открытия вируса табачной мозаики была доказана вирусная природа ящура , а еще через несколько лет были открыты бактериофаги . Таким образом, были открыты три основные группы вирусов, поражающие растения, животных и бактерии.

Однако в течение длительного времени эти самостоятельные разделы вирусологии развивались изолированно, а наиболее сложные вирусы -- бактериофаги -- долгое время считались не живой материей, а чем-то вроде ферментов. Тем не менее, уже к концу 20-х - началу 30-х годов стало ясно, что вирусы являются живой материей, и примерно тогда же за ними закрепились наименования фильтрующихся вирусов, или ультравирусов. Это нашло отражение в одной из первых монографий о них . Позже приставки отпали, и укоренилось ныне применяемое обозначение -- вирусы, под которым объединили вирусы растений, животных и бактериофаги -- бактериальные вирусы.

В конце 30-х - начале 40-х годов изучение вирусов продвинулось настолько, что сомнения в живой их природе отпали, и было сформулировано положение о вирусах как организмах . Основанием для признания вирусов организмами явились полученные при их изучении факты, свидетельствовавшие, что вирусы, как и другие организмы (животные, растения, простейшие, грибы, бактерии), способны размножаться, обладают наследственностью и изменчивостью, приспособляемостью к меняющимся условиям среды их обитания и, наконец, подверженностью биологической эволюции, обеспечиваемой естественным или искусственным отбором.

Концепция о вирусах как организмах достигла своего расцвета к началу 60-х годов, когда было введено понятие “вирион” как вирусного индивидуума . Однако в эти же годы, ознаменовавшиеся первыми успехами молекулярной биологии вирусов, начался и закат концепции о вирусах как организмах, и эти противоречивые процессы (триумф и закат) нашли свое отражение на 1-м Международном симпозиуме . Уже тогда одновременно с введением понятия “вирион” были показаны, с одной стороны, отличия их строения от строения клеток и даже был введен термин “архитектура” вирионов . С другой стороны, были обобщены факты, указывавшие на совершенно отличный от клеток тип размножения, который некоторое время называли дизъюнктивной репродукцией, подчеркивая разобщенность -- временную и территориальную -- синтеза генетического материала (РНК, ДНК) и белков вирусов. В докладе на упоминавшемся симпозиуме был также сформулирован основной критерий отличия вирусов от других организмов: генетический материал вирусов является одним из двух типов нуклеиновых кислот (РНК или ДНК), в то время как организмы имеют оба типа нуклеиновых кислот.

Этот критерий в дальнейшем оказался неабсолютным, так как, во-первых, ДНК-содержащие вирусы в ходе репродукции синтезируют информационные (или матричные) РНК, во-вторых, РНК-содержащие ретровирусы в ходе репродукции синтезируют ДНК, а, кроме того, крупные РНК-содержащие вирусы (оспы, герпеса) могут содержать небольшие количества РНК также и в вирионах, а небольшие количества ДНК (все же, вероятно, клеточной) обнаружены в вирионах вирусов гриппа. Основным и абсолютным критерием, отличающим вирусы от всех других форм жизни, является отсутствие у них собственных систем синтеза белка (рибосомных систем).

Накопившиеся к настоящему времени данные позволяют также прийти к выводу, что вирусы не являются организмами, пусть даже мельчайшими, так как любые, даже минимальные организмы типа микоплазм, риккетсий или хламидий имеют собственные белоксинтезирующие системы.

Способ размножения вирусов также отличается от деления, почкования, спорообразования или полового процесса, которые имеют место у одноклеточных организмов, у клеток многоклеточных организмов и у последних в целом. Репродукция, пли репликация, как обычно обозначают размножение вирусов, происходит дизъюнктивно (последний термин ныне чаще подразумевается, чем употребляется). Формирование вирионов происходит либо путем самосборки (упаковка вирусной нуклеиновой кислоты в белковый капсид и образование таким путем нуклеокапсида), либо с участием клетки (некоторые липидсодержащие фаги микоплазм), либо обоими способами (оболочечные вирусы). Конечно, противопоставление митотического деления клетки и репликации не абсолютно, так как способы репликации генетического материала клетки и ДНК-содержащих вирусов принципиально не отличаются, а если учесть, что и синтез генетического материала у РНК-содержащих вирусов также осуществляется по матричному типу, то относительным является противопоставление митоза и репликации всех вирусов. И, тем не менее, различия в способах размножения клеток и вирусов настолько существенны, что имеет смысл делить весь живой мир на вирусы и невирусы.

К вирусам не применимы и многие другие понятия, являющиеся “атрибутами” организмов. Прежде всего, такие фундаментальные понятия, как “особь”, “популяция”, “вид”.

Принято трактовать понятие “вирион” как вирусный индивидуум, хотя вирион является лишь определенной стадией жизни вируса, и как раз той стадией, на которой вирус не проявляет жизнедеятельности. Поэтому было даже предложено именовать эту стадию существования вируса вироспорой. Между тем существует несколько групп вирусов, у которых геном не только фрагментарен (это имеет место и у клеток эукариотов, геном которых дискретен и существует в виде суммы хромосом), но и разные его фрагменты разобщены и находятся в различных частицах. Вирус проявляет инфекционные свойства лишь при попадании полного набора разноименных частиц, число которых у вирусов растений 2 - 4, а у некоторых вирусов насекомых до 28. Что же представляет собой вирусный индивидуум в этих случаях, когда даже понятие “вирион” не может быть применено?

Переходя к анализу активной жизнедеятельности вируса, которая целиком сводится к его репродукции, мы обнаруживаем, что место проникшего в клетку вириона занимают либо голая нуклеиновая кислота его (например, у вируса полиомиелита), либо нуклеопротеидный комплекс (например, у вируса гриппа), либо более сложные субвирионные структуры (например, у реовируса). Затем происходит синтез дочерних молекул вирусного генома. У многих ДНК-содержащих вирусов этот процесс не только сходен с синтезом клеточной ДНК хромосом, но и обеспечивается в значительной степени, а иногда почти полностью клеточными ферментами. Причем это имеет место не только при образовании простых и мелких вирусов (паповавирусы, парвовирусы), но и при синтезе сложных вирусов с большим геномом (герпесвирусы, иридовирусы), у которых некоторая доля синтезов ДНК катализируется собственными ферментами. Образующиеся при этом репликативные интермедиаты вряд ли могут быть охарактеризованы как вирусные индивидуумы: это матрицы, на которых синтезируются многочисленные копии дочерних геномов вируса. У вирусов с геномом в виде однонитевой РНК они либо информационно бессмысленны, т. е. не кодируют соответствующие вирусспецифические белки (вирусы с позитивной полярностью генома), либо, напротив, содержат гены для вирусных белков, так как вирионная РНК не обладает кодирующими свойствами.

Наряду с продуктивным циклом некоторые ДНК-содержащие вирусы (умеренные фаги, паповавирусы, вирус гепатита В и др.) могут вступать в интегративное взаимодействие с клеточным геномом, ковалентно встраиваясь в него и, превращаясь в группу клеточных генов, которые передаются клеткам -- потомкам (у эукариотов) по законам Менделеева. В этом состоянии интегрированный вирусный геном, обозначаемый как провирус, фактически является группой клеточных генов. Если в провирусе произойдет мутация, делающая невозможным "вырезание" вирусного генома из клеточного, такой дефектный провирус может навсегда стать составной частью генома. Многие данные позволяют заключить, что геномы про- и эукариотов имеют в своем составе интегрированные гены или геномы в прошлом самостоятельных вирусов.

Существует большая группа РНК-содержащих ретровирусов, у которых на матрице их генома синтезируется комплиментарная ДНК. Она в виде двунитевой ДНК интегрируется (ковалентно встраивается) в клеточный геном и в этом виде является матрицей для синтеза дочерних молекул вирионной РНК и мРНК для синтеза вирусных белков. В обоих случаях (интеграбельные ДНК-содержащие вирусы, ретро-вирусы) провирус, образующийся такими путями, становится группой клеточных генов.

Эти факты и примеры наглядно иллюстрируют положение о неприменимости понятия индивидуума к вирусам.

Столь же неприменяемым к вирусам является и понятие популяции, так как внутриклеточная стадия репродукции, а тем более интеграционные процессы нацело лишают смысла трактовку репродуцирующегося вируса как популяции. К этому следует добавить данные о дефектных интерферирующих частицах, “сопровождающих” почти каждую вирусную инфекцию. Эти частицы представляют собой вирионы с неполным геномом, поэтому они не способны к репродукции. Тем не менее, они играют важную биологическую роль, обеспечивая персистенцию вирусов в инфицированных организмах или в культурах тканей. Таким образом, вирусная “популяция” чаше всего представляет собой суммы полноценных вирионов и дефектных образований, т. е. фактически мертвого материала. Такого рода “популяции”, состоящие из живых и мертвых особей, невозможно даже представить в мире организмов. В некоторых случаях сумма дефектных частиц с дефектами в разных участках генома может обеспечить развитие вирусной инфекции (феномен множественной реактивации).

Естественно, в случае, если нет особей, нет популяции, трудно ввести понятие вида. Этот вывод будет подкреплен далее соображениями о происхождении и эволюции вирусов. И, тем не менее, эти понятия нашли применение в вирусологии. Мы говорим о разных реально существующих популяциях вирусов на уровне, как инфицированных организмов, так и популяций хозяев вирусов, а современная международно-признанная классификация вирусов основана на выделении видов, родов и даже семейств и применении биноминальной номенклатуры, которая принята для всех остальных представителей органического мира. И это не чистые забавы, а теоретически обоснованные и практически полезные методические подходы. К объяснению этих парадоксов мы еще вернемся.

Если вирусы не организмы, то чем же тогда они являются? Для того чтобы ответить на этот вопрос, необходимо очертить круг биологических структур, которые можно обозначить как вирусы. Это легко, если речь идет об обычных, общепризнанных вирусах, например, о вирусах оспы или фаге MS2 , несмотря на то, что первый из них имеет геном -- ДНК с молекулярной массой до 240·10 6 , а второй -- РНК с молекулярной массой около 1,2·10 6. Различия между этими вирусами, вероятно, не менее значимы, чем, скажем, между кишечной палочкой и слоном или, хотя бы, любой клеткой этого животного. Однако мир вирусов еще более богат, если не ограничивать их общепризнанными инфекционными вирусами.

К числу вирусов, несомненно, следует отнести и дефектные вирусы. Дефектными являются многие онкогенные ретровирусы, так как приобретение ими генов, кодирующих онкогены, часто сопровождается делениями остальных генов. В присутствии полноценных вирусов-помощников, обычно близких к дефектным биологически, дефектный вирус может либо реплицироваться (если он не имеет дефект гена полимеразы), либо использовать белки вируса-помощника (если он имеет дефекты генов внутренних или оболочечных белков). Возможно, использование и белков биологически отдаленных вирусов: если дефектный, по оболочечным белкам, ретровирус размножать в присутствии вируса везикулярного стоматита, то вирионы будут иметь внешнюю оболочку последнего. Впрочем, для этого даже не надо, чтобы один из вирусов был дефектным: при смешанной инфекции многими вирусами образуются вирионы, геном которых заключен в оболочки другого вируса.

С сателлитами “сближаются” плазмиды, или, как раньше их называли, эписомы, экстрахромосомные факторы наследственности. Это относительно небольшие, обычно с молекулярной массой менее 107, циркулярные, реже линейные, молекулы ДНК, которые часто обнаруживаются в бактериальных клетках. Они выполняют разные функции соответственно имеющимся на них генам: токсины, убивающие насекомых; гены, обусловливающие опухолевые разрастания у растений; ферменты, разрушающие или модифицирующие антибиотики; фактор фертильности -- фактически индуцирующий половой процесс у бактерий -- обмен генами между хромосомами двух бактерий. У дрожжей обнаружены киллеры (двунитевая РНК), на которых “закодированы” токсины, убивающие дрожжевые клетки, не носящие в себе киллеров. От вирусов, в том числе дефектных, и сателлитов плазмиды имеют два главных отличия: их гены не кодируют синтез белков, в которые упакованы нуклеиновые кислоты, и репликация их обеспечивается клеткой. Плазмиды обычно находятся в свободном виде в цитоплазме, но могут быть интегрированы в геном клетки-носителя, последняя может и освобождаться от них. Между плазмидами и обычными вирусами нет резких границ. Так, некоторые плазмиды явно являются производными фагов, утратив большую часть их генов и сохранив лишь некоторые из них. Ряд вирусов, например, вирус папилломы коров, может длительно персистировать в виде плазмид -- голых молекул ДНК. В виде плазмид с полным или частично делетированным геномом могут персистировать вирусы герпеса. С развитием генной инженерии стали возможными искусственное получение плазмид из вирусной ДНК, встройка в плазмиды чужеродных генов и даже искусственное конструирование плазмид из фрагментов клеточной ДНК.

К вирусам примыкают вироиды -- возбудители инфекционных болезней растений. Они не имеют существенных отличий от обычных вирусных болезней, но вызываются своеобразными структурами -- небольшими (молекулярная масса 120000 - 160000) циркулярными суперспирализированными молекулами РНК. Во всем остальном это типичные вирусные болезни с определенными проявлениями, инфекционностью при механической передаче, размножением вироидов в зараженных клетках.

Наконец, с вирусными инфекциями имеют сходство болезни животных (овцы, козы) и человека (болезнь куру, болезнь, Крейтцфельда - Якоба), выражающиеся в развитии спонги-формных энцефалопатий. Предполагают, что эти болезни являются результатами выхода из-под контроля генов, кодирующих белки, которые являются и их продуктами, и их деренрессорами, и причиной характерных поражений нервных клеток.

Возможность дегенеративной эволюции была неоднократно установлена и доказана, и, пожалуй, наиболее ярким примером ее может служить происхождение некоторых клеточных органелл эукариотов от симбиотических бактерий. В настоящее время на основании изучения гомологии нуклеиновых кислот можно считать установленным, что хлоропласты простейших и растений происходят от предков нынешних сине-зеленых бактерий, а митохондрии -- от предков пурпурных бактерий. Обсуждается так же возможность происхождения центриолей от прокариотических симбионов. Поэтому такая возможность не исключена и для происхождения вирусов, особенно таких крупных, сложных и автономных, каким является вирус оспы.

Все же мир вирусов слишком разнообразен, чтобы признать возможность столь глубокой дегенеративной эволюции для большинства его представителей, от вирусов оспы, герпеса и иридовирусов до аденосателлитов, от реовирусов до сателлитов вируса некроза табака или РНК-содержащего дельта-вируса -- сателлита вируса гепатита В, не говоря уж о таких автономных генетических структурах, как плазмиды или вироиды. Разнообразие генетического материала у вирусов является одним из аргументов в пользу происхождения вирусов от доклеточных форм. Действительно, генетический материал вирусов “исчерпывает” все его возможные формы: одно- и двунитевые РНК и ДНК, их линейные, циркулярные и фрагментарные виды. Природа как бы испробовала на вирусах все возможные варианты генетического материала, прежде чем окончательно остановила свой выбор на канонических его формах -- двунитевой ДНК как хранителе генетической информации и однонитевой РНК как ее передатчике. И все же разнообразие генетического материала у вирусов скорее свидетельствует о полифилетическом происхождении вирусов, нежели о сохранении предковых доклеточных форм, геном которых эволюционировал по маловероятному пути от РНК к ДНК, от однонитевых форм к двунитевым и т. п.

Третья гипотеза 20 - 30 лет казалась маловероятной и даже получила ироническое название гипотезы взбесившихся генов. Однако накопленные факты дают все новые и новые аргументы в пользу этой гипотезы. Ряд этих фактов будет обсужден в специальной части книги. Здесь же отметим, что именно эта гипотеза легко объясняет не только вполне очевидное полифилетическое происхождение вирусов, но и общность столь разнообразных структур, какими являются полноценные и дефектные вирусы, сателлиты и плазмиды и даже прионы. Из этой концепции также вытекает, что образование вирусов не явилось единовременным событием, а происходило многократно и продолжает происходить в настоящее время. Уже в далёкие времена, когда начали формироваться клеточные формы, наряду и вместе с ними сохранились и развивались неклеточные формы, представленные вирусами -- автономными, но клеточно-зависимыми генетическими структурами. Ныне существующие вирусы являются продуктами эволюции, как древнейших их предков, так и недавно возникших автономных генетических структур. Вероятно, хвостатые фаги служат примером первых, в то время как R-плазмиды -- примером вторых.

Основным положением эволюционной теории Ч. Дарвина является признание борьбы за существование и естественного отбора как движущих сил эволюционного процесса. Открытия Г. Менделя и последующее развитие генетики дополнили основные положения эволюционной теории учением о наследственной изменчивости, имеющей случайный, стохастический, характер, в частности о мутациях и рекомбинациях, которые являются “материалом” для естественного отбора. Последующее развитие молекулярной генетики материализировало понятие гена и химических основ мутаций и рекомбинаций, включая точечные мутации, вставки, делеции, перестройку и т. п. Однако справедливо отмечалось, что молекулярная генетика хорошо объясняла лишь процессы микроэволюции преимущественно в пределах мира и плохо объясняла процессы макроэволюции -- образование крупных таксономических групп, являющихся основой прогрессивной эволюции.

Для объяснения молекулярных основ этих процессов, а также реальных темпов эволюции была предложена теория дупликации генов и геномов . Эта концепция соответствует наблюдаемым фактам и хорошо объясняет эволюцию органического мира на Земле, в частности, появление позвоночных (хордовых) и их дальнейшую эволюцию от примитивных бесчерепных до человека. Поэтому эта концепция быстро получила признание среди биологов, изучающих молекулярные основы эволюции.

Наряду с этим накопилось значительное число фактов, свидетельствующих о существовании в природе в широких масштабах обмена готовыми блоками генетической информации, в том числе у представителей разных, эволюционно далеких вирусов. В результате такого обмена могут быстро и скачкообразно изменяться наследственные свойства путем встраивания чужеродных генов (заимствование генной функции). Новые генетические качества могут возникнуть также благодаря неожиданному сочетанию собственных и интегрированных генов (возникновение новой функции). Наконец, простое увеличение генома за счет неработающих генов открывает возможность эволюции последних (образование новых генов).

Особая роль в обеспечении этих процессов принадлежит вирусам -- автономным генетическим структурам, включающим как конвенционные вирусы, так и плазмиды. Эта мысль была высказана в общих чертах , а затем развита более подробно [Жданов В. М., Тихоненко Т. И., 1974].