Maximo свойства системы история значений. Методичка работы с maxima. Индивидуальная работа по карточкам

После запуска Maxima появляется окно программы, в верхней графической части окна интерфейса указано, какая загружена версия. Попробуем набрать несколько команд. Разделителем команд является символ “ ; ” (в ранних версиях Maxima и некоторых ее оболочках наличие точки с запятой после каждой команды строго обязательно, поэтому рекомендуется добавлять; после каждой команды).

После ввода команды необходимо нажать клавиши Shift и Enter для ее обработки и вывода результата. После ввода каждой команде присваивается порядковый номер (%i1), (%i2), (%i3) и т.д. Результаты вычислений имеют соответственно порядковый номер (%o1), (%o2) и т. д. Где "i" -сокращение от англ. input (ввод), а "o" - англ. output (вывод). Это позволяет при дальнейшей записи команд сослаться на ранее записанные, например (%i1)+(%i2) будет означать добавление к выражению первой команды выражения второй с последующим вычислением результата. Также можно использовать и номера результатов вычислений, например, таким образом (%o1)*(%o2). maxima математика график функция

Используемые обозначения для ввода команд. Ввод числовой информации

Правила ввода чисел в Maxima точно такие, как и для многих других подобных программ:

  • * Целая и дробная часть десятичных дробей разделяются символом точка.
  • * Перед отрицательными числами ставится знак минус.
  • * Числитель и знаменатель обыкновенных дробей разделяется при помощи символа / (прямой слеш).

Обратите внимание, что если в результате выполнения операции получается некоторое символьное выражение, а необходимо получить конкретное числовое значение в виде десятичной дроби, то решить эту задачу позволит применение оператора numer. В частности он позволяет перейти от обыкновенных дробей к десятичным.

Константы

В Maxima для удобства вычислений есть ряд встроенных констант:

Арифметические операции

Для обозначения арифметических операций в Maxima используются математические знаки: «+» - сложение, «-» - вычитание, «*» - умножение, «/»- деление.

Возведение в степень можно обозначать тремя способами: ^ , ^^ , **.

Извлечение корня степени n записывают, как степень ^^(1/n ).

Напомним еще одну встроенную в Maxima полезную операцию - нахождение факториала числа. Эта операция обозначается восклицательным знаком.

Например, 6!=1. 2. 3. 4. 5. 6=120.

Для увеличения приоритета операции, как и в математике, при записи команд для Maxima используют круглые () скобки.

Переменные

Для хранения результатов промежуточных расчетов применяются переменные. Заметим, что при вводе названий переменных, функций и констант важен регистр букв, так переменные x и X - это две разные переменные. Присваивание значения переменной осуществляется с использованием символа

: (двоеточие), Например, x : 5- «переменной х присвоено значение 5» или b: a^2+3 - «переменная b будет иметь значение равное а2+3 ». -

Если необходимо удалить значение переменной (очистить ее), то применяется метод kill:

kill(x ) - удалить значение переменной x ;

kill(all) - удалить значения всех используемых ранее переменных.

Кроме того, kill начинает новую нумерацию для исполняемых команд.

Математические функции

В Maxima имеется достаточно большой набор встроенных атематических функций. Для записи функции необходимо указать ее название, а затем, в круглых скобках записать через запятую значения аргументов.

Например, sin(x );

Следует иметь в виду, что некоторые названия функций отличаются от названий, используемых в отечественной литературе:

Обозначение

Тригонометрические

sin(x) (синус),

cos(x) (косинус),

tan(x) (тангенс),

cot(x) (котангенс),

sec(x) (секанс,),

csc(x) (косеканс,).

Обратные тригонометрические

asin(x) (арксинус),

acos(x) (арккосинус),

atan(x) (арктангенс),

acot(x) (арккотангенс).

Гиперболические

sinh(x) (гиперболический синус),

cosh(x) (гиперболический косинус),

tanh(x) (гиперболический тангенс),

coth(x) (гиперболический котангенс),

sech(x) (гиперболический секанс),

csch(x) (гиперболический косеканс).

Натуральный логарифм,

Остаток от деления

Квадратный корень

Минимальный элемент из списка

Максимальный элемент из списка

Пользовательские функции

Пользователь может задать собственные функции. Для этого сначала указывается название функции, в скобках перечисляются названия аргументов, после знаков:= (двоеточие и равно) следует описание функции. После задания пользовательская функция вызывается точно так, как и встроенные функции Maxima .

Maxima - еще одна программа для выполнения математических вычислений, символьных преобразований, а также построения разнообразных графиков. Сложные вычисления оформляются в виде отдельных процедур, которые затем могут быть использованы при решении других задач. Система Maxima распространяется под лицензией GPL и доступна как пользователям ОС Linux, так и пользователям MS Windows.

Для работы с данной системой в ОС Linux следует в окне shell набрать команду maxima или xmaxima для запуска ее графической оболочки. Другим удобным инструментом для работы с системой Maxima является программа texmacs . На панели инструментов этой программы располагается кнопка с изображением монитора, нажатиe на которую открывает меню выбора интерактивной сессии. Выбор пункта maxima позволит начать сеанс работы с этой программой.

При отображении результатов вычислений эта оболочка использует стандартные математические обозначения, в то время как xmaxima или maxima - только символы из таблицы ASCII-кодов.

При старте выводится некоторая информация о системе и "метка" (C1). Каждый ввод и вывод помечаются системой и затем могут быть использованы снова. Символ C (от command) используется для обозначения команд, введенных пользователем, а D (от display) - при выводе результатов вычислений.

Для инициализации процесса вычислений следует ввести команду, затем символ; (точка с запятой) и нажать клавишу Enter. Если не требуется вывод полученной информации на экран, то вместо точки с запятой используется символ $. Обратиться к результату последней команды можно с помощью символа %. Для повтора ранее введенной команды, скажем (C2), достаточно ввести два апострофа и затем метку требуемой команды, например, ""C2.

Система Maxima не обращает внимание на регистр введенных символов в именах встроенных констант и фунций. Запись sin(x) эквивалентна записи SIN(x), но при выводе результатов в текстовом режиме используются заглавные буквы. Регистр букв, однако, важен при использовании переменных, например, Maxima считает x и Xразными переменными.

Для стандартных математических констант используются следующие обозначения: %e (или %E) для основания натуральных логарифмов, %i (%I) для мнимой единицы (квадратный корень из числа -1) и %pi (%PI) для числа
.

Присваивание значения какой-либо переменной осуществляется с помощью знака : (двоеточие), а символ = (равно) используется при задании уравнений или подстановок.

(C1) x:2; (D1) 2 (C2) y:3; (D2) 3 (C3) x + y; (D3) 5

Функция kill аннулирует присвоенные ранее значения переменных. Параметр all этой функции приводит к удалению значения всех переменных, включая метки Ci и Di.

(C8) kill(x); (D8) DONE (C9) x + y; (D9) x + 3 (C10) kill(all); (D0) DONE (C1) x + y; (D1) y + x

Для завершения работы с системой применяется функция quit(); , а прерывание процесса вычислений осуществляется путем нажатия комбинации клавиш Ctrl+c (после чего следует ввести:q для возврата в обычный режим работы).

Справка о той или иной функции выводится по команде describe (имя функции). При работе в графической оболочке XMaxima, можно воспользоваться пунктом меню help. Процедура example (имя функции) демонстрирует примеры использования функции.

Тема : Система команд, вычисления в Maxima .

Цель: продолжить знакомство с программой Maxima , познакомить с системой команд Maxima ; развивать память, внимание; воспитывать информационную культуру.

Ход урока:

    Организационное начало:

    Приветствие.

    Работа с дежурными.

    Повторительно-обучающее начало.

    Индивидуальная работа по карточкам.

Карточка №1.

    1. Понятие системы математический вычислений.

      Особенности системы математических вычислений.

Карточка №2.

    1. Понятие компьютерной алгебры.

      Особенности компьютерной алгебры.

    Устный индивидуальный опрос.

Понятие Maxima . Особенности. Запуск программы.

Интерфейс программы Maxima .

    Работа по осмыслению и усвоению нового материала.

    Объявление темы и цели урока.

    Изучение нового материала.

Ввод простейших команд в wxMaxima

После запуска wxMaxima появляется окно программы.

верхней графической части окна интерфейса Maxima рассказывает, что загружена версия 5.14.0, что она распространяется по лицензии GNU, с какого сайта доступна и кто её родитель. В нижнем окне в поле ВВОД: Maxima приготовилась воспринимать команды. Разделителем команд является символ; (точка с запятой). После ввода команды необходимо нажать клавишу Enter для ее обработки и вывода результата.

В ранних версиях Maxima и некоторых ее оболочках (например, xMaxima), и в консольной версии наличие точки с запятой после каждой команды строго обязательно. Поэтому настоятельно рекомендуем при использовании Максимы

не забывать добавлять точку с запятой; после каждой команды. В случае, когда выражение надо отобразить, а не вычислить, перед ним необходимо поставить знак (") (одинарная кавычка). Но этот метод не работает, когда выражение имеет явное значение,

например, выражение sin(π) Максима рассматривает как нуль и при наличии апострофа. Трудно предусмотреть многообразие возможных вариантов использования Максимы для расчета или преобразования выражений. В сложных случаях, можно попытаться получить справку на английском языке. Для вызова справки достаточно в поле ВВОД написать? и нажать Enter.

Обозначение команд и результатов вычислений

После ввода каждой команде присваивается порядковый номер. На приведенном ниже рисунке введенные команды имеют номера 1–3 и обозначаются соответственно (%i1), (%i2), (%i3). Результаты вычислений имеют соответственно порядковый номер (%o1), (%o2) и т.д. Где "i" – сокращение от англ. Input (ввод), а "o" – англ. Output (вывод)

Этот механизм позволяет при дальнейшей записи команд сослаться на ранее записанные, например (%i1)+(%i2) будет означать добавление к выражению первой команды выражения второй с последующим вычислением результата. Также можно использовать и номера результатов вычислений, например, таким образом (%o1)*(%o2).

Для последней выполненной команды в Maxima есть специальное обозначение – %.

Пример: Вычислить значение производной функции

в точке х=1.

Команда (%i9) была выполнена, и был получен результат (%о9). Поэтому следующая команда (%i10) сослалась на уже полученный результат, но уточнила значение переменной х, поэтому команда получала вид (%i10) (%о9), х=1.

Ввод числовой информации

Правила ввода чисел в Maxima точно такие, как и для многих других подобных программ. Целая и дробная часть десятичных дробей разделяются символом точка. Перед отрицательными числами ставится знак минус.

Числитель и знаменатель обыкновенных дробей разделяется при помощи символа / (прямой слэш).

Обратите внимание, что если в результате выполнения операции получается некоторое символьное выражение, а необходимо получить конкретное числовое значение в виде десятичной дроби, то решить эту задачу позволит применение оператора numer . В частности он позволяет перейти от обыкновенных дробей к десятичным

Здесь Maxima прежде всего действовала по умолчанию. Она сложила дроби 3/7 и 5/3 по правилам арифметики точно: нашла общий знаменатель, привела дроби к общему знаменателю и сложила числители. В итоге она получила

44/21. Лишь после того, как мы попросили её получить численный ответ, она вывела приближенный, с точностью 16 знаков численный ответ 2,095238095238095.

Константы

В Maxima для удобства вычислений есть ряд встроенных констант, самые распространенные из них показаны в следующей таблице (табл.1):

Арифметические операции

Обозначения арифметических операций в Maxima ничем не отличаются от классического представления, используются математические знаки: + – * /.

Возведение в степень можно обозначать тремя способами: ^ , ^^ , **. Извлечение корня степени n записывают, как степень ^^(1/n ). Напомним еще одну встроенную в Maxima полезную операцию –нахождение факториала числа. Эта операция обозначается восклицательным

Например, 6!=1⋅ 2⋅ 3⋅ 4⋅ 5⋅ 6=120.

Для увеличения приоритета операции, как и в математике, при записи команд для Maxima используют круглые () скобки.

Переменные

Для хранения результатов промежуточных расчетов применяются переменные. Заметим, что при вводе названий переменных, функций и констант важен регистр букв, так переменные x и X – это две разные переменные.

Присваивание значения переменной осуществляется с использованием символа: (двоеточие), например x : 5;.

Если необходимо удалить значение переменной (очистить ее), то применяется метод kill :

kill (x ) – удалить значение переменной x ;

kill (all ) – удалить значения всех используемых ранее переменных.

И кроме того, метод kill начинает новую нумерацию для исполняемых команд (обратите внимание, что ответом на команду (%i 3), приведенную выше, оказался ответ с номером ноль (%o 0) done , и далее нумерация команд продолжилась с единицы).

Математические функции

В Maxima имеется достаточно большой набор встроенных математических функций. Вот некоторые из них (табл.2). Следует иметь ввиду, что некоторые названия функций отличаются от названий, используемых в отечественной литературе: Вместо tg – tan , вместо ctg – cot , вместо arcsin – asin , вместо arcos – acos , вместо arctg – atan , вместо arcctg – acot , вместо ln – log , вместо cosec – csc .

Правило записи функций

Для записи функции необходимо указать ее название, а затем, в круглых скобках записать через запятую значения аргументов. Если значением аргумента является список, то он заключается в квадратные скобки, а элементы списка также разделяются запятыми.

integrate(sin(x),x,-5,5); plot2d(,,);

Пользовательские функции

Пользователь может задать собственные функции. Для этого сначала указывается название функции, в скобках перечисляются названия аргументов, после знаков:= (двоеточие и равно) следует описание функции. После задания пользовательская функция вызывается точно так, как и встроенные функции Maxima.

Перевод сложных выражений в линейную форму записи

Одним из самых сложных занятий для начинающих пользователей системы Maxima является запись сложных выражений, содержащих степени, дроби и другие конструкции, в линейной форме (в текстовой форме записи, при помощи ASCII символов, в одну строку).

Для облегчения данного процесса нелишне дать несколько рекомендаций:

1. Не забывайте ставить знак умножения! В графическом окне Maxima по правилам математики удвоенное значение переменной х записывает в виде 2x , но в окне ВВОД: команда для Maxima должна выглядеть как 2*x .

2. В случае сомнения всегда лучше поставить «лишние», дополнительные скобки (). Числитель и знаменатель выражения всегда необходимо заключать в скобки.

А также при возведении в степень основание и степень лучше всегда брать в скобки.

3. Функция не существует отдельно от своих аргументов (если таковые имеются). Поэтому, например, при возведении в степень можно взять всю функцию с аргументами в скобки, а потом уже возводить полученную конструкцию в нужную степень: (sin (x ))**2.

Также помните, что несколько аргументов функции записываются в скобках, через запятую, например, min(x1,x2,x3,xN);

5. Недопустима запись функции sin(2*x) в виде sin*2*x или sin2x.

6. В случае записи сложного выражения разбейте его на несколько простых составляющих, введите их по отдельности, а затем объедините, используя рассмотренные ранее обозначения введенных команд.

Пример: необходимо ввести следующее выражение:

Разделим это выражение на три составные части: числитель, выражение в скобках и степень. Запишем каждую составную часть и объединим их в выражение.

Maxima упростит выражение

rat(выражение). преобразовывает рациональное выражение к канонической форме. То

есть раскрывает все скобки, затем приводит все к общему знаменателю, суммирует и сокращает; кроме того, приводит все числа в конечной десятичной записи к рациональным.

    Задание на дом:

Стахин Н.А, с 10-18, опорный конспект.

    Итог урока.

Для чего предназначена программа Maxima ?

Перечислите основные элементы интерфейса программы Maxima .

Перечислите основные команды Maxima .

Так как в этом цикле статей речь пойдет о математической программе для символьных вычислений, для начала пару слов о том, что из себя представляют эти самые символьные или, как их еще называют, аналитические вычисления, в отличие от численных расчетов. Компьютеры, как известно, оперируют с числами (целыми и с плавающей запятой). К примеру, решения уравнения x 2 = 2 x + 1 можно получить как −0.41421356 и 2.41421356, а 3 x = 1 - как 0.33333333. А ведь хотелось бы увидеть не приближенную цифровую запись, а точную величину, т. е. 1±√2 в первом случае и 1/3 во втором. С этого простейшего примера и начинается разница между численными и символьными вычислениями. Но кроме этого, есть еще задачи, которые вообще невозможно решить численно. Например, параметрические уравнения, где в виде решения нужно выразить неизвестное через параметр; или нахождение производной от функции; да практически любую достаточно общую задачу можно решить только в символьном виде. Поэтому неудивительно, что и для такого класса задач появились компьютерные программы, оперирующие уже не только числами, а почти любыми математическими объектами, от векторов до тензоров, от функций до интегро-дифференциальных уравнений и т. д.

Максима в науке и образовании

Среди математического ПО для аналитических (символьных) вычислений наиболее широко известно коммерческое (Maple , Mathematica ); это очень мощный инструмент для ученого или преподавателя, аспиранта или студента, позволяющий автоматизировать наиболее рутинную и требующую повышенного внимания часть работы, оперирующий при этом аналитической записью данных, т. е. фактически математическими формулами. Такую программу можно назвать средой программирования, с той разницей, что в качестве элементов языка программирования выступают привычные человеку математические обозначения.

Программа, которая стала темой статьи, работает на тех же принципах и предоставляет похожий функционал; самое радикальное ее отличие - то, что она не является ни коммерческой, ни закрытой. Другими словами, речь идет о свободной программе. На самом деле использование свободного ПО более естественно для фундаментальной науки, нежели коммерческого, так как модель, которая используется в свободном ПО - это модель открытости и общедоступности всех наработок. Очевидно, эти же свойства присущи и результатам научной деятельности. Используя такую схожесть подходов, можно фактически рассматривать расширения функционала свободных программ или дополнительные библиотеки, которые могут создаваться для своих нужд в процессе научных исследований, как неотъемлемую часть результатов таких исследований. И эти результаты могут использоваться и распространяться на усмотрение пользователя без оглядки на ограничения, налагаемые лицензиями исходного ПО. В случае же коммерческого ПО, которое находится в собственности его производителя, такого рода свободы значительно ограничены, начиная от невозможности свободно (и законно) передавать само такое ПО вместе с наработками и вплоть до возможных патентных исков от компании-разработчика ПО в случае распространения самодельных дополнительных библиотек к нему.

С другой стороны, основное направление, кроме научных разработок, где такие программы востребованы - это высшее образование; а использование для учебных нужд именно свободного ПО - это реальная возможность и для вуза, и для студентов и преподавателей иметь в своем распоряжении легальные копии такого ПО без больших, и даже сколь-нибудь существенных, денежных затрат.

Эта статья открывает цикл, посвященный свободной программе аналитических вычислений Maxima . Этим циклом я постараюсь дать вам наиболее полное впечатление о программе: он будет посвящен как принципам и основам работы с Maxima, так и описанию более широких ее возможностей и практическим примерам.

Немного истории

История проекта, известного ныне под именем Maxima, началась еще в конце 60-х годов в легендарном MIT (Massachusetts Institute of Technology - Массачусетский Технологический институт), когда в рамках существовавшего в те годы большого проекта MAC началась работа над программой символьных вычислений, которая получила имя Macsyma (от MAC Symbolic MAnipulation). Архитектура системы была разработана к июлю 1968 г., непосредственно программирование началось в июле 1969. в качестве языка для разработки системы был выбран Lisp, и история показала, насколько это был правильный выбор: из существующих в то время языков программирования он единственный продолжает развиваться и сейчас - спустя почти полвека после старта проекта. Принципы, положенные в основу проекта, позднее были заимствованы наиболее активно развивающимися ныне коммерческими программами - Mathematica и Maple; таким образом, Macsyma фактически стала родоначальником всего направления программ символьной математики. Естественно, Macsyma была закрытым коммерческим проектом; его финансировали государственные и частные организации, среди которых были вошедшее в историю ARPA (Advanced Research Projects Agency; помните ARPAnet - предок интернета?), Энергетический и Оборонный Департаменты США (Departments of Energy & Defence, DOE and DOD). Проект активно развивался, а организации, контролирующие его, менялись не раз, как это всегда бывает с долгоживущими закрытыми проектами. в 1982 году профессор уильям Шелтер (William Schelter) начал разрабатывать свою версию на основе этого же кода, под названием Maxima. в 1998 году Шелтеру удалось получить от DOE права на публикацию кода по лицензии GPL. Первоначальный проект Macsyma прекратил свое существование в 1999 году. Уильям Шелтер продолжал заниматься разработкой Maxima вплоть до своей смерти в 2001 году. Но, что характерно для открытого ПО, проект не умер вместе со своим автором и куратором. Сейчас проект продолжает активно развиваться, и участие в нем является лучшей визитной карточкой для математиков и программистов всего мира.

Пару слов о программе

На данный момент Maxima выпускается под две платформы: Unix-совместимые системы, т. е. Linux и *BSD, и MS Windows. Я, конечно же, буду вести речь о Linux-версии.

Сама по себе Maxima - консольная программа, и все математические формулы отрисовывает обычными текстовыми символами. В этом есть как минимум два плюса. С одной стороны, саму Maxima можно использовать как ядро, надстраивая поверх нее графические интерфейсы на любой вкус. Их на сегодняшний день существует немало; в этот раз я остановлюсь на двух самых популярных (см. врезку) - и наиболее наглядных и удобных в работе, а об остальных поговорим в следующих выпусках; они тоже по-своему интересны, хотя более специфичны.

С другой стороны, сама по себе, без каких-либо интерфейсных надстроек, Maxima нетребовательна к железу и может работать на таких компьютерах, которые сейчас и за компьютеры уже никто не считает (это может оказаться актуальным, к примеру, для вуза или научной лаборатории, у которых денег на обновление парка машин скорее всего нет, а потребность в ПО для символьных вычислений возникнуть может).

Имена функций и переменных в Максиме чувствительны к регистру, то есть прописные и строчные буквы в них различаются. Это не будет в новинку любому, кто уже имел дело с POSIX-совместимыми системами или с такими языками программирования, как, скажем, C или Perl. Удобно это и с точки зрения математика, для которого тоже привычно, что заглавными и строчными буквами могут обозначаться разные объекты (например, множества и их элементы, соответственно).

Для того, чтобы начать работать с программой, вам понадобится пакет Maxima; если в стандартных репозитариях вашего дистрибутива его не окажется, то взять его можно на сайте проекта, адрес которого приведен во врезке.

Принципы работы с программой не зависят от того, какой интерфейс к ней вы выберете, поэтому я постараюсь Максимально абстрагироваться от конкретного интерфейса, ограничиваясь лишь небольшими комментариями в тех случаях, когда они ведут себя по-разному.

На данный момент последняя версия программы - 5.9.3, именно о ней я и буду говорить; если в вашем дистрибутиве пока присутствует более старая версия, вы в принципе можете использовать ее: и актуальная еще несколько месяцев назад 5.9.2, и вышедшая в конце прошлого года 5.9.1 не имеют с нынешней принципиальных различий.

Графические интерфейсы к Максиме

С точки зрения ознакомления с самой Maxima наибольший интерес представляют два интерфейса.

Первый - это отдельная самостоятельная графическая программа по имени . Она, как и сама Maxima, помимо Linux/*BSD существует еще и в версии для MS Windows. В wxMaxima вы вводите формулы в текстовом виде, а вывод Максимы отображается графически, привычными математическими символами. Кроме того, большой упор здесь сделан на удобство ввода: командная строка отделена от окна ввода-вывода, а дополнительные кнопки и система меню позволяют вводить команды не только в текстовом, но и в диалоговом режиме. Так называемое «автодополнение» в командной строке на самом деле с таковым имеет лишь то сходство, что вызывается клавишей « Tab ». Ведет же оно себя, к сожалению, всего лишь как умная история команд, т. е. вызывает ту команду из уже введенных в этой сессии, которая начинается с заданных в командной строке символов, но не дополняет до имен команд и их параметров. Таким образом, этот интерфейс наиболее удобен в том случае, когда вам нужно много вычислять и видеть результаты на экране; и еще, возможно, в том случае, если вы не очень любите вводить все команды с клавиатуры. Кроме того, wxMaxima предоставляет удобный интерфейс к документации по системе; хотя, так как документация поставляется в формате html, вместо этого можно использовать обычный браузер.


Второй достаточно интересный интерфейс к Maxima - это дополнительный режим в редакторе . Хотя этот редактор имеет общее историческое прошлое с широко известным Emacs, что явствует из названия, но практического сходства между ними мало. TeXmacs разрабатывается для визуального редактирования текстов научной тематики, при котором вы видите на экране редактируемый текст практически в том же виде, в котором он будет распечатан. В частности, он имеет так называемый математический режим ввода, очень удобный для работы с самыми разнообразными формулами, и умеет импортировать/экспортировать текст в LaTeX и XML/HTML. Именно возможностями по работе с формулами пользуется Maxima, вызванная из TeXmacs’а. Фактически, формулы отображаются в привычной математической нотации, но при этом их можно редактировать и копировать в другие документы наподобие обыкновенного текста. Maxima-сессия вызывается из меню: «вставить Сессия Maxima », при этом появляется дополнительное меню с командами Максимы. После запуска сессии можно уже внутри нее перейти в математический режим ввода (меню режимов ввода вызывается первой кнопкой на панели ввода) и при вводе также использовать элементы математической нотации. Этот интерфейс будет наиболее удобен тем, кто хочет использовать результаты вычислений в своих текстах и любит редактировать их в визуальном режиме.



Приступаем к работе

После запуска Maxima-сессии мы видим перед собой такие строки:

Maxima restarted. (%i1)

Первая - это сообщение о том, что ядро Максимы только что запустилось (вместо нее, в зависимости от версии и конкретной сборки, может выводиться краткая информация о программе); вторая - приглашение к вводу первой команды. Команда в Максиме - это любая комбинация математических выражений и встроенных функций, завершенная, в простейшем случае, точкой с запятой. После ввода команды и нажатия « Enter » Maxima выведет результат и будет ожидать следующей команды:


Для арифметических действий используются традиционные обозначения: - , + , * , / ; ** или ^ для возведения в степень, sqrt() для квадратного корня.

Если для каких-то обозначений будет неочевидно, как записать их в строку, я буду пояснять это по ходу изложения.

Как видите, каждая ячейка имеет свою метку; эта метка - заключенное в скобки имя ячейки. Ячейки ввода именуются как %i с номером (i от input - ввод), ячейки вывода - как %o с соответствующим номером (o от output - вывод). Со знака % начинаются все встроенные служебные имена: чтобы, с одной стороны сделать их достаточно короткими и удобными в использовании, а с другой - избежать возможных накладок с пользовательскими именами, которые тоже часто удобно делать короткими. Благодаря такому единообразию вам не придется запоминать, как часто бывает в других системах, какие из таких коротких и удобных имен зарезервированы программой, а какие вы можете использовать для своих нужд. К примеру, внутренними именами %e и %pi обозначены общеизвестные математические постоянные; а через %c с номером обозначаются константы, используемые при интегрировании, для которых использование буквы «c» традиционно в математике.

При вводе мы можем обращаться к любой из предыдущих ячеек по ее имени, подставляя его в любые выражения. Кроме того последняя ячейка вывода обозначается через % , а последняя ячейка ввода - через _ . Это позволяет обращаться к последнему результату, не отвлекаясь на то, каков его номер.

Здесь %+47/59 - то же самое, что %o1+47/59 .

Вывод результата вычисления не всегда нужен на экране; его можно заглушить, завершив команду символом $ вместо; . Заглушенный результат при этом все равно вычисляется; как видите, в этом примере ячейки %o1 и %o2 доступны, хотя и не показаны (к ячейке %o2 обращение идет через символ % , смысл которого расшифрован выше):

Каждую следующую команду не обязательно писать с новой строки; если ввести несколько команд в одну строчку, каждой из них все равно будет соответствовать свое имя ячейки. К примеру, здесь в строке после метки %i1 введены ячейки от %i1 до %i4 ; в ячейке %i3 используются %i1 и %i2 (обозначенная как _ - предыдущий ввод):


В wxMaxima и TeXmacs последнюю или единственную команду в строке можно не снабжать завершающим символом - это сработает так же, как если бы она была завершена; , т. е. вывод заглушен не будет. В дальнейших примерах я часто буду опускать; . Если вы выберете другой интерфейс, не забывайте ее добавлять.

Помимо использования имен ячеек, мы, естественно, можем и сами давать имена любым выражениям. По-другому можно сказать, что мы присваиваем значения переменным, с той разницей, что в виде значения такой переменной может выступать любое математическое выражение. Делается это с помощью двоеточия - знак равенства оставлен уравнениям, которые, учитывая общий математический контекст записи, проще и привычнее так читаются. И к тому же, так как основной конек Максимы - символьная запись и аналитические вычисления, уравнения достаточно часто используются. Например:

В каком-то смысле двоеточие даже нагляднее в таком контексте, чем знак равенства: это можно понимать так, что мы задаем некое обозначение, а затем через двоеточие расшифровываем, что именно оно обозначает. После того, как выражение поименовано, мы в любой момент можем вызвать его по имени:

Любое имя можно очистить от присвоенного ему выражения функцией kill() , и освободить занимаемую этим выражением память. Для этого нужно просто набрать kill(name) , где name - имя уничтожаемого выражения; причем это может быть как имя, назначенное вами, так и любая ячейка ввода или вывода. Точно так же можно очистить разом всю память и освободить все имена, введя kill(all) . В этом случае очистятся в том числе и все ячейки ввода-вывода, и их нумерация опять начнется с единицы. В дальнейшем, если по контексту будет иметься в виду логическое продолжение предыдущих строк ввода-вывода, я буду продолжать нумерацию (этим приемом я уже воспользовался выше). Когда же новый «сеанс» будет никак не связан с предыдущим, буду начинать нумерацию заново; это будет косвенным указанием сделать « kill(all) », если вы будете набирать примеры в Maxima, так как имена переменных и ячеек в таких «сеансах» могут повторяться.

Доступ к документации Максимы

В примерах выше мы воспользовались двумя встроенными функциями. Как нетрудно догадаться из контекста, solve - это функция решения уравнения, а diff - функция дифференцирования. Практически весь функционал Maxima реализован через такие встроенные функции. Функция в Maxima может иметь переменное число аргументов. Например, функция solve , которую мы использовали с одним аргументом, чаще вызывается с двумя аргументами. Первый задает уравнение или функцию, чьи корни надо найти; второй - переменную, относительно которой нужно решать уравнение:


Если формула, задающая решаемое уравнение, содержит только один символ, как в предыдущем примере, то второй аргумент можно опустить, так как выбор, относительно чего нужно решать уравнение, все равно однозначен.

Вторая функция из наших новых знакомых - diff - также может принимать один аргумент; в этом случае она находит дифференциал заданного выражения:

Через del(x) и del(y) здесь обозначены дифференциалы соответствующих символов.

Для каждой встроенной функции есть описание в документации по Maxima. Оно содержит сведения о том, какие аргументы и в каких вариантах принимает функция, а также описание ее действия в разных случаях и конкретные примеры применения. Но, конечно, искать описание каждой нужной функции в html-документации или info-страницах не всегда удобно, тем более, что нужна эта информация, как правило, прямо в процессе работы. Поэтому в Maxima есть специальная функция - describe() , которая выдает информацию из документации по конкретным словам. Более того, специально для удобства получения справочной информации существует сокращенная версия вызова этой функции: ? name вместо describe(name) . Здесь? - это имя оператора, и аргумент нужно отделять от него пробелом (выражение?name используется для вызова функции Lisp с именем name). Функция describe и оператор? выдают список тех разделов помощи и имен функций, которые содержат заданный текст, после чего предлагают ввести номер того раздела или описания той функции, которые вы хотите посмотреть:

Когда вы выберете раздел, будет выдано его содержимое:


Если для слова, которое вы ввели после? или describe , найдено единственное совпадение, его описание будет показано сразу.

Кроме справки, по многим функциям Maxima есть примеры их использования. Пример можно загрузить функцией example() . Вызов этой функции без аргумента отобразит список всех имен доступных примеров; вызов вида example(name) загрузит в текущую сессию и выполнит указанный файл примера:


Решение проблемы с запуском из-под TeXmacs

Если у вас возникли проблемы с запуском Maxima-сессии из TeXmacs, обратите внимание на то, кто у вас в системе выступает под именем /bin/sh . Дело в том, что инициализация всех разнообразных сессий реализована в TeXmacs’е через shell-скрипты, вызываемые именно с помощью /bin/sh . И в скрипте, отвечающем за сессию Maxima, используется возможность, которая не стандартизирована как обязательная для /bin/sh , но присутствует в его эмуляции bash. Другими словами, если у вас /bin/sh является не ссылкой на /bin/bash , а чем-то другим, то именно это может послужить причиной невозможности открыть Maxima-сессию (к примеру, в Debian и основанных на нем дистрибутивах кроме bash ссылку /bin/sh на себя может захотеть поставить еще и более легкий dash ; в этом случае восстановить статус-кво можно с помощью dpkg-reconfigure dash). Если сделать /bin/sh ссылкой на /bin/bash не представляется возможным, можете попробовать поменять #!/bin/sh на #!/bin/bash в файле /usr/lib/texmacs/TeXmacs/bin/maxima_detect . Я написал об этой проблеме разработчикам TeXmacs, но еще не получил никакой их реакции, так что не могу пока сказать, будет ли исправлена эта недоработка в ближайших версиях.

Основные принципы

То, что Максима написана на Lisp, человеку, знакомому с этим языком, становится понятно уже в начале работы с программой. Действительно, в Максиме четко прослеживается «лисповский» принцип работы с данными, который оказывается очень кстати в контексте символьной математики и аналитических вычислений. Дело в том, что в Lisp, по большому счету, нет разделения на объекты и данные: имена переменных и выражения могут использоваться практически в одном и том же контексте. В Maxima же это свойство развито еще сильнее: фактически, мы можем использовать любой символ вне зависимости от того, присвоено ли ему какое-то выражение. По умолчанию символ, связанный с любым выражением, будет представлять это выражение; символ, не связанный ни с чем, будет представлять самого себя, трактуемого опять-таки как выражение. Поясним на примере:

Из этого следует, в частности, что в выражение автоматически подставляется значение входящего в него символа только в том случае, если это значение было приписано символу до определения выражения:

Если некоторый символ уже имеет какое-то значение, можем ли мы использовать в выражении сам этот символ, а не его значение? Конечно. Сделать это можно с помощью знака апострофа - введенный перед любым символом или выражением, он предотвращает его вычисление:

Результат выражения %i12 был бы аналогичен и в том случае, если бы b и y не имели на тот момент никаких значений; таким образом, мы можем смело блокировать вычисление символа, даже не запоминая (или не зная), присвоены ли им вообще какие-то выражения.

Точно так же можно поступить с любой встроенной функцией, если мы хотим не выполнить ее, а использовать в своем математическом контексте. Например, уже упомянутая функция дифференцирования может пригодиться нам для обозначения производной в дифференциальном уравнении; в этом случае, конечно, вычислять ее не надо:

Благодаря описанным особенностям работа в Максиме, с одной стороны, становится во многом похожей на традиционную «ручную» работу с математическими формулами, что практически сводит на нет психологический барьер в начале работы с программой. С другой стороны, даже на этом начальном этапе вы фактически избавлены от наиболее рутинной ручной работы, вроде отслеживания текущих значений символов, и можете полностью сосредоточиться на самой задаче. Конечно, блокировка вычислений - это не единственный способ влиять на то, как Максима будет вычислять то или иное выражение; этим процессом можно управлять довольно гибко.